The longer the column, the longer the wavelength, and the lower the frequency.
An open-ended organ column is 3.6 m long.
I. Determine the wavelength of the fundamental harmonic played by this column.
Wavelength = 2 * length = 2 * 3.6 = 7.2 m
II. Determine the frequency of this note if the speed of sound is 346m/s.
Frequency = speed of sound / wavelength = 346 / 7.2 = 48.05 Hz
III. If we made the column longer, explain what would happen to the fundamental note.
If we made the column longer, the fundamental note would be lower in frequency. This is because the wavelength of the fundamental harmonic would increase, and the frequency is inversely proportional to the wavelength.
In other words, the longer the column, the longer the wavelength, and the lower the frequency.
Learn more about wavelength from the given link,
https://brainly.com/question/10750459
#SPJ11
A 1.60-m-long steel piano wire has a diameter of 0.20 cm. How great is the tension in the wire if it stretches 0.25 cm when tightened? Approximately what tension force would break it? The tensile strength of steel is 1.0×10 ^9
N/m ^2
The tension in the wire is about 50.9 N. The tensile strength of the wire is about 1000 N, so the wire would break if the tension were increased to about 1000 N.
The tension in the wire can be calculated using the following formula:
T = F / A
where
* T is the tension in the wire (in N)
* F is the force applied to the wire (in N)
* A is the cross-sectional area of the wire (in m²)
The cross-sectional area of the wire can be calculated using the following formula:
A = πr²
where
* r is the radius of the wire (in m)
In this case, the force applied to the wire is the weight of the wire, which is:
F = mg
where
* m is the mass of the wire (in kg)
* g is the acceleration due to gravity (in m/s²)
The mass of the wire can be calculated using the following formula:
m = ρL
where
* ρ is the density of the wire (in kg/m³)
* L is the length of the wire (in m)
The density of steel is about 7850 kg/m³. The length of the wire is 1.60 m. The radius of the wire is 0.01 m.
Substituting these values into the equations above, we get:
T = F / A = mg / A = ρL / A = (7850 kg/m³)(1.60 m) / π(0.01 m)² = 50.9 N
The tensile strength of steel is about 1000 N. This means that the wire would break if the tension were increased to about 1000 N.
Learn more about tension force here; brainly.com/question/30470948
#SPJ11
A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has components E, - E-O and Ex=(4,8V/m) cos[(ex 1015 13t-x/c})(a) What is the amplitude of the magnetic field component? (b) Parallel to which axis does the magnetic field oscilate? (C) When the electric field component is in the positive direction of the z axis at a certain point P, what is the direction of the magnetic field component there? Assume that the speed of light is 2.998*10m/s. (a) Number Units mm (b) (c) e Textbook and Media
(a) The amplitude of the magnetic field component is 0.1333 T.
(b) The magnetic field oscillates parallel to the y-axis.
(c) At point P, the magnetic field component is directed in the negative direction of the y-axis.
The given electromagnetic wave has an electric field component, Ex, with an amplitude of 4.8 V/m. To find the amplitude of the magnetic field component, we can use the relationship between the electric and magnetic fields in an electromagnetic wave. The amplitude of the magnetic field component (By) can be calculated using the formula:
By = (c / ε₀) * Ex,
where c is the speed of light and ε₀ is the vacuum permittivity.
Given that the speed of light is 2.998 × 10^8 m/s, and ε₀ is approximately 8.854 × 10^-12 C²/(N·m²), we can substitute these values into the formula:
By = (2.998 × 10^8 m/s / (8.854 × 10^-12 C²/(N·m²))) * 4.8 V/m.
Calculating the expression yields:
By ≈ 0.1333 T.
Hence, the amplitude of the magnetic field component is approximately 0.1333 T.
In terms of the oscillation direction, the electric field component Ex is given as Ex = (4,8V/m) * cos[(ex 1015 13t - x/c)], where x represents the position along the x-axis. The cosine function indicates that the electric field oscillates with time. Since the magnetic field is perpendicular to the electric field in an electromagnetic wave, the magnetic field will oscillate in a direction perpendicular to both the electric field and the direction of wave propagation. Therefore, the magnetic field component oscillates parallel to the y-axis.
Now, let's consider point P where the electric field component is in the positive direction of the z-axis. At this point, the electric field is pointing upward along the z-axis. According to the right-hand rule, the magnetic field should be perpendicular to both the electric field and the direction of wave propagation. Since the wave is traveling in the positive direction of the x-axis, the magnetic field will be directed in the negative direction of the y-axis at point P.
Learn more about magnetic field
brainly.com/question/23096032
#SPJ11
cylinder from Heat Transfer) 2. Find the overall resistance per metre length for the following: α i =1500 W/m 2 K, α 0 =12X0 W/m 2 K, and α i =1500 W/m 2 K,α 0 =2YoW/m 2 K. Use 2in. standard type M copper tube dimensions, λ copper =399 W/mK. Compare the results.
The overall resistance per meter length for the given conditions can be calculated as follows:
For the first case (αi = 1500 W/m²K, αo = 120 W/m²K):
Overall resistance, R1 = (1 / αi) + (t / λ) + (1 / αo)
Where t is the thickness of the copper tube.
For the second case (αi = 1500 W/m²K, αo = 20 W/m²K):
Overall resistance, R2 = (1 / αi) + (t / λ) + (1 / αo)
To calculate the overall resistance per meter length, we consider the resistance to heat transfer at the inside surface of the tube, the resistance through the tube wall, and the resistance at the outside surface of the tube.
In both cases, we use the given values of αi (inside surface heat transfer coefficient), αo (outside surface heat transfer coefficient), and λ (thermal conductivity of copper) to calculate the individual resistances. The thickness of the copper tube, denoted as t, is also considered.
The overall resistance is obtained by summing up the individual resistances using the appropriate formula for each case.
By comparing the overall resistance per meter length for the two cases, we can assess the impact of the different values of αo. The comparison will provide insight into how the outside surface heat transfer coefficient affects the overall heat transfer characteristics of the system.
To learn more about resistance ,visit
brainly.com/question/17563681
#SPJ11
SFIES CIRCUITS AND INIBRNAT RESISTANGR SECTION PAGE RELATED QUESTIONS AND PROBLEMS: 1. When two bulbs, of equal wattage rating, are connected in series: (a) how does the brightness of the bulbs compare? (b) what happens if one bulb is disconnected?
When two bulbs are connected in series, their brightness decreases. If one bulb is disconnected, the circuit becomes incomplete, and both bulbs will not light up.
When two bulbs, of equal wattage rating, are connected in series, the bulbs become dimmer. This is because the current in the circuit decreases due to the increased resistance.In this situation, the total resistance of the circuit is equal to the sum of the individual resistances of the two bulbs. Since the resistance has increased, the current through the circuit has decreased, resulting in a decrease in brightness.If one bulb is disconnected, the other bulb will also go out, as the circuit is now incomplete and no current is flowing through it. When one bulb is disconnected, the resistance of the circuit becomes infinite. This is because the circuit is incomplete, and no current can flow through it. Consequently, the second bulb will not receive any current, and it will not light up.
The series circuits are not always the best choice for lighting. It is better to use parallel circuits for lighting, as each bulb receives the full voltage of the circuit, and the brightness of the bulbs remains constant. This is because in parallel circuits, the voltage is the same across each component, and the current is shared between the components.
To know more about resistancevisit:
brainly.com/question/32301085
#SPJ11
A uranium nucleus (mass 238 units) at rest decays into a helium nucleus (mass 4.0 units) and a thorium nucleus (mass 234 units). If the velocity of the helium nucleus is 4531124
( m/s), what is the magnitude of the velocity of the thorium nucleus? Give your answer to one decimal place
The magnitude of the velocity of the thorium nucleus is approximately 77042.4 m/s (rounded to one decimal place).
To solve this problem, we can use the principle of conservation of momentum. Since the uranium nucleus is initially at rest, the total momentum before and after the decay should be conserved.
Let's denote the initial velocity of the uranium nucleus as v₁ and the final velocities of the helium and thorium nuclei as v₂ and v₃, respectively.
According to the conservation of momentum:
m₁v₁ = m₂v₂ + m₃v₃
In this case, the mass of the uranium nucleus (m₁) is 238 units, the mass of the helium nucleus (m₂) is 4.0 units, and the mass of the thorium nucleus (m₃) is 234 units.
Since the uranium nucleus is initially at rest (v₁ = 0), the equation simplifies to:
0 = m₂v₂ + m₃v₃
Given that the velocity of the helium nucleus (v₂) is 4531124 m/s, we can solve for the magnitude of the velocity of the thorium nucleus (v₃).
0 = 4.0 × 4531124 + 234 × v₃
Simplifying the equation:
v₃ = - (4.0 × 4531124) / 234
Evaluating the expression:
v₃ = - 77042.4 m/s
To know more about velocity
https://brainly.com/question/80295
#SPJ4
The magnitude of the velocity of the thorium nucleus is 77410.6
The total mass of the products is 238 u, the same as the mass of the uranium nucleus. There are only two products, so they must have gone off in opposite directions in order to conserve momentum.
Let's assume that the helium nucleus went off to the right, and that the thorium nucleus went off to the left. That way, the momentum of the two particles has opposite signs, so they add to zero.
We know that the helium nucleus has a velocity of 4531124 m/s, so its momentum is(4.0 u)(4531124 m/s) = 1.81245e+13 kg m/s. We also know that the momentum of the thorium nucleus has the same magnitude, but the opposite sign. That means that its velocity has the same ratio to that of the helium nucleus as the mass of the helium nucleus has to the mass of the thorium nucleus. That ratio is(4.0 u)/(234.0 u) = 0.017094So the velocity of the thorium nucleus is(0.017094)(4531124 m/s) = 77410 m/s.
Answer: 77410.6
Learn more about magnitude
https://brainly.com/question/31022175
#SPJ11
Newton's First Law results in a) acceleration. b) friction. c) conservation of momentum.
Newton's First Law, also known as the law of inertia, does not result in acceleration, friction, or conservation of momentum.
Acceleration, the change in velocity over time, is the result of applying a net force to an object according to Newton's Second Law. Friction, on the other hand, is a force that opposes motion and arises when two surfaces are in contact. It is not a direct consequence of Newton's First Law.
Conservation of momentum, which states that the total momentum of an isolated system remains constant if no external forces act upon it, is related to Newton's Third Law. Newton's First Law alone does not address the concept of momentum conservation.
Newton's First Law provides a fundamental understanding of the behavior of objects in the absence of external forces. It establishes the principle of inertia, where an object will maintain its state of motion unless acted upon by an external force.
This law is often used as a starting point to analyze the motion of objects and predict their behavior. It allows us to understand why objects tend to resist changes in motion and why we feel the need to exert force to start, stop, or change the direction of an object's motion.
Learn more about acceleration here:
https://brainly.com/question/28743430
#SPJ11
Measurements of the rotational and translational energies of molecules can be measured from _, while the distance of the spacing between adjacent atomic planes in solid crystalline structures can be measured by O Raman Scattering, X-Ray Fluorescence OX-Ray Fluorescence, Raman Scattering OX-Ray Diffraction, Raman Scattering O Raman Scattering, X-Ray Diffraction O X-Ray Fluorescence, X-Ray Diffraction O X-Ray Diffraction, X-Ray Fluorescence
The measurements of the rotational and translational energies of molecules can be measured from Raman Scattering, while the distance of the spacing between adjacent atomic planes in solid crystalline structures can be measured by X-Ray Diffraction.
The rotational and translational energies of molecules can be measured by Raman scattering. It is an inelastic scattering of a photon, usually in the visible, near ultraviolet, or near infrared range of the electromagnetic spectrum. The distance of the spacing between adjacent atomic planes in solid crystalline structures can be measured by X-Ray Diffraction, a technique that allows us to understand the structure of molecules in a more detailed way.
To know more about energies:
https://brainly.com/question/1932868
#SPJ11
An ant stands 70 feet away from a tower, and has to look up at a 40 degree angle to see the top. Find the height of the tower.
An ant stands 70 feet away from a tower, and has to look up at a 40 degree angle to see the top. The height of the tower is approximately 58.74 feet.
To find the height of the tower, we can use trigonometry. Let's denote the height of the tower as 'h'.
We have a right triangle formed by the ant, the tower, and the line of sight to the top of the tower. The distance from the ant to the base of the tower is 70 feet, and the angle formed between the ground and the line of sight is 40 degrees.
In a right triangle, the tangent function relates the opposite side to the adjacent side. In this case, the opposite side is the height of the tower (h), and the adjacent side is the distance from the ant to the tower (70 feet). Therefore, we can use the tangent function as follows:
tan(40°) = h / 70
To find the value of h, we can rearrange the equation:
h = 70 * tan(40°)
Now, let's calculate the height of the tower using the given formula:
h = 70 * tan(40°)
h ≈ 70 * 0.8391
h ≈ 58.7387 feet
Therefore, the height of the tower is approximately 58.74 feet.
learn more about angle
https://brainly.com/question/14965872
#SPJ11
traveling?
The displacement of a wave traveling in the negative y-direction is D(y,t) = (5.10 cm ) sin ( 6.30 y+ 63.0 t), where y is in m and t is in s. In which direction is the wave
O-z
Oz
O -y
O y
O -x
Ox
Waves Part B
What is the frequency of this wave in units of Hz?
Waves Part C
What is the wavelength, in m, of this wave in Part A. enter your answer in 3 decimals.
Waves Part D
What is the maximum velocity of a particle in the wave in units of m/s? enter your answer in 2 decimals
The direction of the wave is in the Oz direction.
The frequency of the wave is 10 Hz.
The wavelength of the wave is 1 m.
The maximum velocity of a particle in the wave is 3.20 m/s
The given displacement equation for a wave traveling in the negative y-direction is
D(y,t) = (5.10 cm ) sin ( 6.30 y+ 63.0 t)
Where y is in m and t is in s.
Direction of the wave:
The direction of the wave can be determined from the sine term of the equation.
It is the direction of the displacement at y = 0, which is along the positive z-axis.
Therefore, the direction of the wave is in the Oz direction.
Frequency of the wave:
The frequency of a wave is given by the formula:
f = 1 / T
where
T is the period of the wave.
In this case, the wave can be written in the standard form as
D(y,t) = (5.10 cm ) sin (6.30 y - 63.0 t)
Comparing this with the standard equation, we have
y = (1/6.3) sin (6.3 y - 63t)
This can be written as
y = (1/6.3) sin (2πy/λ - 2πf t)
Comparing with the general equation
y = A sin (2π/λ x - 2πf t)
we can see that the wavelength is λ = (2π/6.3) m = 1.00 m.
f = 1/ T
= 63/2π
= 10.00 Hz
Hence, the frequency of the wave is 10 Hz.
Wavelength of the wave:
The wavelength of the wave can be determined from the given equation for displacement.
It is given by the formula
λ = (2π/B),
where B is the coefficient of y.
In this case,
B = 6.30,
λ = (2π/6.3) m
= 1.00 m.
Therefore, the wavelength of the wave is 1 m.
Maximum velocity of a particle in the wave:
The maximum velocity of a particle in the wave is given by the product of the maximum amplitude and the angular frequency of the wave.
Therefore, the maximum velocity of a particle in the wave is
vmax = Aω
where
A is the amplitude of the wave and ω is the angular frequency of the wave.
In this case,
A = 5.10 cm = 0.0510 m
ω = 2πf = 20π m/s
Therefore,
vmax = Aω
= (0.0510 m)(20π)
≈ 3.20 m/s
Hence, the maximum velocity of a particle in the wave is 3.20 m/s (rounded off to 2 decimal places).
Learn more about the wavelength:
brainly.com/question/24452579
#SPJ11
A force vector has a magnitude of 584 newtons and points at an angle of 45° below the positive
x axis. What are (a) the x scalar component and (b) the y scalar component of the vector?
The x scalar component is –412.95 N which can be obtained the formula =Magnitude of the vector × cos (angle). The y scalar component is –412.95 N which can be obtained the formula =Magnitude of the vector × sin (angle).
(a) The given vector has a magnitude of 584 newtons and points at an angle of 45° below the positive x-axis. To find the x-scalar component of the vector, we need to multiply the magnitude of the vector by the cosine of the angle the vector makes with the positive x-axis.
x scalar component = Magnitude of the vector × cos (angle made by the vector with the positive x-axis)
Here, the angle made by the vector with the positive x-axis is 45° below the positive x-axis, which is 45° + 180° = 225°.
Therefore, x scalar component = 584 N × cos 225°= 584 N × (–0.7071) ≈ –412.95 N.
(b) To find the y scalar component of the vector, we need to multiply the magnitude of the vector by the sine of the angle the vector makes with the positive x-axis.
y scalar component = Magnitude of the vector × sin (angle made by the vector with the positive x-axis)
Here, the angle made by the vector with the positive x-axis is 45° below the positive x-axis, which is 45° + 180° = 225°.
Therefore, y scalar component = 584 N × sin 225°= 584 N × (–0.7071) ≈ –412.95 N
Thus, the x scalar component and the y scalar component of the vector are –413.8 N and –413.8 N respectively.
Learn more about vectors: https://brainly.com/question/30250946
#SPJ11
Question 2. [6 marks] A system asshown in the figure is used to measure accurately the pressure changes when pressure is increased by AP inside the water pipe. When the height difference reaches Ah = 70 mm, what is the change in pipe pressure? Water Pipe Glycerin, SG= 1.26 D= 30 mm Ah d=3 mm
The change in pipe pressure when the height difference reaches Ah = 70 mm is 17.3 kPa.
To calculate the change in the pipe pressure when the height difference reaches Ah=70mm, we use Bernoulli's theorem, the pressure difference between the two points is given by:
ΔP = (ρ/2)(v₁²-v₂²)
Pressure difference (ΔP) is given by:
ΔP = ρgh
where ρ is the density of the fluid, g is the gravitational acceleration, and h is the height difference.
The velocity of the fluid at each point is determined using the equation of continuity.
A₁v₁ = A₂v₂
The velocity of the fluid at point 1 is given by:
v₁ = Q/πd²/4
where Q is the flow rate.
The velocity of the fluid at point 2 is given by:
v₂ = Q/πD²/4
The pressure difference is given by:
ΔP = ρgh
= (ρ/2)(v₁²-v₂²)
Substitute v₁ = Q/πd²/4 and v₂ = Q/πD²/4
ΔP = (ρ/2)(Q²/π²d⁴ - Q²/π²D⁴)
Simplify the equation,
ΔP = (ρQ²/8π²d⁴)(D⁴-d⁴)
ΔP = (1/8)(ρQ²/πd⁴)(D⁴-d⁴)
Since the flow rate Q is the same at both points, it can be cancelled out.
ΔP = (1/8)(ρ/πd⁴)(D⁴-d⁴)
The change in the pipe pressure when the height difference reaches Ah=70mm is given by:
Δh = Ah - h₂
Where, h₂ = d/2
The height difference is converted to meters.
Δh = 70/1000 - 30/1000 = 0.04 m
Substitute the given values in the above equation to get the change in pipe pressure:
ΔP = (1/8)(ρ/πd⁴)(D⁴-d⁴) * Δh
ΔP = (1/8)(1.26/π(30/1000)⁴)(3/1000)⁴) * 0.04
ΔP = 17.3 kPa
Learn more about change in pipe pressure: https://brainly.com/question/15079200
#SPJ11
The magnitude of the orbital angular momentum of an electron in an atom is L=120ħ. How many different values of L, are possible?
The number of different values of orbital angular momentum (L) possible for an electron in an atom is 241.
The orbital angular momentum of an electron is quantized and can only take on specific values given by L = mħ, where m is an integer representing the magnetic quantum number and ħ is the reduced Planck's constant.
In this case, we are given that L = 120ħ. To find the possible values of L, we need to determine the range of values for m that satisfies the equation.
Dividing both sides of the equation by ħ, we have L/ħ = m. Since L is given as 120ħ, we have m = 120.
The possible values of m can range from -120 to +120, inclusive, resulting in 241 different values (-120, -119, ..., 0, ..., 119, 120).
Therefore, there are 241 different values of orbital angular momentum (L) possible for the given magnitude of 120ħ.
learn more about orbital angular momentum here:
https://brainly.com/question/31626716
#SPJ11
What is the potential difference across a 10.0mH inductor if the current through the inductor drops from 130 mA to 50.0 mA in 14.0μ s? Express your answer with the appropriate units.
The potential difference across a 10.0 mH inductor, when the current through it decreases from 130 mA to 50.0 mA in 14.0 μs, is 0.0568 V.
To calculate the potential difference (V) across the inductor, we can use the formula:
V = L × ΔI ÷ Δt
Given:
Inductance (L) = 10.0 mH = 10.0 x [tex]10^{-3}[/tex] H
Change in current (ΔI) = 130 mA - 50.0 mA = 80.0 mA = 80.0 x [tex]10^{-3}[/tex] A
Time interval (Δt) = 14.0 μs = 14.0 x [tex]10^{-3}[/tex] s
Substituting the given values into the formula, we have:
V = (10.0 x [tex]10^{-3}[/tex] H) * (80.0 x [tex]10^{-3}[/tex] A) / (14.0 x [tex]10^{-6}[/tex] s)
= 0.8 V * [tex]10^{-3}[/tex] A / 14.0 x [tex]10^{-6}[/tex] s
= 0.8 / 14.0 x [tex]10^{-3}[/tex] A/V * [tex]10^{-6}[/tex] s
= 0.8 / 14.0 x [tex]10^{-3-6}[/tex] A/V
= 0.8 / 14.0 x [tex]10^{-9}[/tex] A/V
≈ 0.0568 V
Therefore, the potential difference across the 10.0 mH inductor, when the current through it drops from 130 mA to 50.0 mA in 14.0 μs, is approximately 0.0568 V.
Learn more about inductor here:
https://brainly.com/question/31503384
#SPJ11
If given a 2-D conductor at zero Kelvin temperature, then the electron density will be expressed as:
If given a 2-D conductor at zero Kelvin temperature, then the electron density will be expressed as:
n = (2 / h²) * m_eff * E_F
Where n is the electron density in the conductor, h is the Planck's constant, m_eff is the effective mass of the electron in the conductor, and E_F is the Fermi energy of the conductor.
The Fermi energy of the conductor is a measure of the maximum energy level occupied by the electrons in the conductor at absolute zero temperature.
To learn more about conductor, refer below:
https://brainly.com/question/14405035
#SPJ11
What If? The two capacitors of Problem 13 (C₁ = 5.00σF and C₂ =12.0 σF ) are now connected in series and to a 9.00-V battery. Find(c) the charge on each capacitor.
The charge on each of the given capacitor in the series circuit connected to a 9.00-V battery is found to be 45 μC for C₁ and 108 μC for C₂.
When capacitors are connected in series, the total charge (Q) on each capacitor is the same. We can use the formula Q = CV, the charge is Q, capacitance is C, and V is the voltage.
Given,
C₁ = 5.00 μF
C₂ = 12.0 μF
V = 9.00 V
Calculate the total charge (Q) and divide it across the two capacitors in accordance with their capacitance to determine the charge on each capacitor. Using the formula Q = CV, we find,
Q = C₁V = (5.00 μF)(9.00 V) = 45.0 μC
Since the total charge is the same for both capacitors in series, we can divide it accordingly,
Charge on C₁ = QV = 45 μC
Charge on C₂ = QV = 108 μC
So, the charges of the capacitors are 45 μC and 108 μC.
To know more about capacitance, visit,
https://brainly.com/question/30529897
#SPJ4
You're in an airplane flying 860 km/hkm/h (240 m/sm/s) horizontally when an engine falls off. Neglecting air resistance, assume it takes 34 s for the engine to hit the ground.
Find the height of airplane.
Find the horizontal distance that the engine moves during its fall.
If the airplane somehow continues to fly as if nothing had happened, what is the distance between the engine and the airplane at the moment the engine hits the ground?
The height of the airplane can be calculated by multiplying the time it takes for the engine to hit the ground by the vertical velocity of the engine.
The horizontal distance traveled by the engine during its fall can be determined by multiplying the horizontal velocity of the airplane by the time it takes for the engine to hit the ground.
To find the height of the airplane, we can use the equation h = v*t, where h represents the height, v is the vertical velocity, and t is the time. The vertical velocity can be determined by converting the horizontal velocity of the airplane to meters per second. Since the airplane is flying at 860 km/h, the vertical velocity is 860 km/h * (1000 m/km) / (3600 s/h) = 238.89 m/s. Multiplying the vertical velocity by the time it takes for the engine to hit the ground (34 s) gives us the height of the airplane: h = 238.89 m/s * 34 s = 8122.26 m.
The horizontal distance traveled by the engine during its fall can be calculated using the equation d = v*t, where d represents the distance and v is the horizontal velocity of the airplane. Given that the airplane is flying at a speed of 860 km/h, the horizontal velocity is 860 km/h * (1000 m/km) / (3600 s/h) = 238.89 m/s. Multiplying the horizontal velocity by the time it takes for the engine to hit the ground (34 s) gives us the horizontal distance traveled by the engine: d = 238.89 m/s * 34 s = 8115.26 m.
To determine the distance between the engine and the airplane at the moment the engine hits the ground, we can use the Pythagorean theorem. The distance between the engine and the airplane forms a right triangle, with the horizontal distance (8115.26 m) as one side and the height of the airplane (8122.26 m) as the other side. Using the theorem, we can calculate the distance as follows: distance = √(8115.26^2 + 8122.26^2) = 11488.91 m.
Therefore, the height of the airplane is 8122.26 m, the horizontal distance traveled by the engine is 8115.26 m, and the distance between the engine and the airplane at the moment the engine hits the ground is 11488.91 m.
Learn more about speed here:
brainly.com/question/17661499
#SPJ11
Solution: The correct answer is D. A. 125J is too low by a factor of 4. This can only result kg• ' from a computational error. B. 250J is too low by a factor of 2. This can only result kg• C from a computational error. C. 375J kg•°C is too low by 25%. This can result from incorrectly calculating the temperature change as 4°C instead of 5°C. D. The answer can be obtained by dimensional analysis of the units. (0.1kg.5°C) (kg: "C) 250J 500J
The equation (0.1kg·5°C) (kg·°C) yields the correct value of 250J. Therefore, option (D) is correct.
Based on the given options, we need to determine the correct statement regarding the computational error and the resulting value in terms of units.
Let's analyze each option:
A. 125J is too low by a factor of 4. This can only result from a computational error.
This option suggests that the computed value of 125J is too low, but it does not specify the correct value or the nature of the computational error.
B. 250J is too low by a factor of 2. This can only result from a computational error.
Similar to option A, this option indicates that the computed value of 250J is too low, but it does not provide further details about the correct value or the computational error.
C. 375J is too low by 25%. This can result from incorrectly calculating the temperature change as 4°C instead of 5°C.
This option suggests that the computed value of 375J is too low, and it attributes this error to an incorrect calculation of the temperature change. Specifically, it mentions using 4°C instead of the correct value of 5°C.
D. The answer can be obtained by dimensional analysis of the units. (0.1kg·5°C) (kg·°C) = 250J.
This option proposes that the correct answer can be obtained by performing dimensional analysis on the given units. It provides the equation (0.1kg·5°C) (kg·°C) = 250J as the result.
Learn more about dimensional analysis, here:
https://brainly.com/question/30303546
#SPJ4
if your body temperature is 38°C and you're giving us given off the greatest amount of infrared light at frequency of 4.2x10^13 Hz.
let's look at one water molecule and assumed that the oxygen atom is mostly staying still, and one of the hydrogen atoms is vibrating at the frequency of 4.2x10^13 Hz. we can model this oscillation as a mass on a spring. It hydrogen atom is just a proton and an electron.
1a. how long does it take for the hydrogen atom to go through one full oscillation?
2a. what is the spring constant?
3a. what is the amplitude of the oscillation?
4a. what is the hydrogen atoms maximum speed while it's oscillating?
2.38 × 10−14 s. This time is taken by the hydrogen atom to complete one oscillation.
Given: Body temperature = 38°C
= 311 K;
Frequency = 4.2 × 1013 Hz.
Let's consider a hydrogen atom vibrating at the given frequency.1a. The time period is given by:
T = 1/f
=1/4.2 × 1013
=2.38 × 10−14 s.
This time is taken by the hydrogen atom to complete one oscillation.
2a. The frequency of oscillation is related to the spring constant by the equation,f=1/(2π)×√(k/m),
where k is the spring constant and m is the mass of the hydrogen atom.Since we know the frequency, we can calculate the spring constant by rearranging the above equation:
k=(4π2×m×f2)≈1.43 × 10−2 N/m.
3a. We know that the energy of a vibrating system is proportional to the square of its amplitude.
Mathematically,E ∝ A2.
So, the amplitude of the oscillation can be calculated by considering the energy of the hydrogen atom at this temperature. It is found to be
2.5 × 10−21 J.
4a. The velocity of a vibrating system is given by,
v = A × 2π × f.
Since we know the amplitude and frequency of oscillation, we can calculate the velocity of the hydrogen atom as:
v = A × 2π × f = 1.68 × 10−6 m/s.
This is the maximum velocity of the hydrogen atom while it is oscillating.
To know more about temperature visit;
brainly.com/question/7510619
#SPJ11
An object of mass m = 9.4 kg is traveling in uniform circular motion at linear speed v = 16.1 ms under centripetal force of F = 69.5 N. If the same object is again traveling in uniform circular motion with the same linear speed, but the centripetal force is increased by a factor of β = 12, then the new radius of the object’s trajectory, Rnew, will be γ times the original radius, R. i.e. Rnew=γR . What is γ? Round your answer to 2 decimal places.
The ratio of new radius to the original radius is γ = 0.15.
Mass of the object, m = 9.4 kg
Linear speed, v = 16.1 m/s
Centripetal force, F = 69.5 N
Rnew = γR
To find:
γ (ratio of new radius to the original radius)
Formula used:
Centripetal force, F = mv²/R
where,
m = mass of the object
v = linear velocity of the object
R = radius of the circular path
Let's first find the original radius of the object's trajectory using the given data.
Centripetal force, F = mv²/R
69.5 = 9.4 × 16.1²/R
R = 1.62 m
Now, let's find the new radius of the object's trajectory.
Rnew = γR
Rnew = γ × 1.62 m
New centripetal force = βF = 12 × 69.5 = 834 N
N = ma
Here, centripetal force, F = 834 N
mass, m = 9.4 kg
velocity, v = 16.1 m/s
N = ma
834 = 9.4a => a = 88.72 m/s²
New radius Rnew can be found using the new centripetal force, F and the acceleration, a.
F = ma
834 = 9.4 × a => a = 88.72 m/s²
Now,
F = mv²/Rnew
834 = 9.4 × 16.1²/Rnew
Rnew = 0.2444 m
Hence, the ratio of new radius to the original radius is γ = Rnew/R
γ = 0.2444/1.62
γ = 0.1512 ≈ 0.15 (rounded to 2 decimal places)
Therefore, the value of γ is 0.15.
To learn more about ratio, refer below:
https://brainly.com/question/13419413
#SPJ11
If c = - 4x + 3y and t = 3x 2y, find the magnitude and direction (angle with respect to +x axis) of the following vectors
a) q = c - 3t
b) p = 3c 3t/2
(a)The magnitude of vector q is approximately 13.34 and its direction is approximately 12.99° with respect to the +x axis. (b)The magnitude of vector p is approximately 11.87 and its direction is approximately -75.96° .
Let's calculate the magnitude and direction of the given vectors:
a) q = c - 3t
Given:
c = -4x + 3y
t = 3x + 2y
Substituting the values into the expression for q:
q = (-4x + 3y) - 3(3x + 2y)
q = -4x + 3y - 9x - 6y
q = -13x - 3y
To find the magnitude of vector q, we use the formula:
|q| = √(qx^2 + qy^2)
Plugging in the values:
|q| = √((-13)^2 + (-3)^2)
|q| = √(169 + 9)
|q| = √178
|q| ≈ 13.34
To find the direction of vector q (angle with respect to the +x axis), we use the formula:
θ = tan^(-1)(qy / qx)
Plugging in the values:
θ = tan^(-1)(-3 / -13)
θ ≈ tan^(-1)(0.23)
θ ≈ 12.99°
Therefore, the magnitude of vector q is approximately 13.34 and its direction is approximately 12.99° with respect to the +x axis.
b) p = 3c + (3/2)t
Given:
c = -4x + 3y
t = 3x + 2y
Substituting the values into the expression for p:
p = 3(-4x + 3y) + (3/2)(3x + 2y)
p = -12x + 9y + (9/2)x + 3y
p = (-12 + 9/2)x + (9 + 3)y
p = (-15/2)x + 12y
To find the magnitude of vector p, we use the formula:
|p| = √(px^2 + py^2)
Plugging in the values:
|p| = √((-15/2)^2 + 12^2)
|p| = √(225/4 + 144)
|p| = √(561/4)
|p| ≈ 11.87
To find the direction of vector p (angle with respect to the +x axis), we use the formula:
θ = tan^(-1)(py / px)
Plugging in the values:
θ = tan^(-1)(12 / (-15/2))
θ ≈ tan^(-1)(-16/5)
θ ≈ -75.96°
To learn more about vector, click here:
https://brainly.com/question/14447709
#SPJ11
QUESTIONS 1) From the observations of force-acceleration and mass-acceleration, what can you conclude about the validity of Newton's second law of motion, F = ma? Have you verified Newton's second law? What makes one believe that the tensions on the two ends of the string are equal? Is this an instance of Newton's third law of motion? Explain. 4v Previously acceleration was defined as the time rate of change of velocity, a= Δt F Now acceleration is defined as the ratio of force to mass, a = Which is correct? m What is the difference in the two expressions for acceleration?
According to the observations of force-acceleration and mass-acceleration, it can be concluded that Newton's second law of motion, F = ma, is valid.
The experiment verifies that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. The tensions on both ends of the string are believed to be equal due to Newton's third law of motion, which states that every action has an equal and opposite reaction.
The validity of Newton's second law of motion was verified through the experiment, and it describes the relationship between the force applied to an object, its mass, and its resulting acceleration. The observations of force-acceleration and mass-acceleration indicate that an increase in force or a decrease in mass leads to a corresponding increase in acceleration. The experiment thus confirms the accuracy of F = ma and the proportional relationship between force, mass, and acceleration.
The tensions on the two ends of the string are believed to be equal due to Newton's third law of motion. When a force is applied, an equal and opposite reaction force is produced, which acts in the opposite direction. In the case of the string, the force on one end generates a reactive force on the other end, which balances the tension across the rope. Therefore, the tensions on both ends of the string will be equal.
Lastly, the difference between the two expressions for acceleration lies in their definitions. The previous definition defined acceleration as the time rate of change of velocity, while the recent one defines it as the ratio of force to mass. Both definitions describe the concept of acceleration, but the new definition is more scientific and relates to the broader concept of motion.
To learn more about Newton's second law of motion click brainly.com/question/25545050
#SPJ11
: 4. Given that the energy in the world is virtually constant, why do we sometimes have an "energy crisis"? 5a What is the ultimate end result of energy transformations. That is, what is the final form that most energy types eventually transform into? 5b What are the environmental concerns of your answer to 5a?
Energy refers to the capacity or ability to do work or produce a change. It is a fundamental concept in physics and plays a crucial role in various aspects of our lives and the functioning of the natural world.
4. Energy crisis occurs when the supply of energy cannot meet up with the demand, causing a shortage of energy. Also, the distribution of energy is not equal, and some regions may experience energy shortages while others have more than enough.
5a. The ultimate end result of energy transformations is heat. Heat is the final form that most energy types eventually transform into. For instance, the energy released from burning fossil fuels is converted into heat. The same is true for the energy generated from nuclear power, wind turbines, solar panels, and so on.
5b. Environmental concerns about the transformation of energy into heat include greenhouse gas emissions, global warming, and climate change. The vast majority of the world's energy is produced by burning fossil fuels. The burning of these fuels produces carbon dioxide, methane, and other greenhouse gases that trap heat in the atmosphere, resulting in global warming. Global warming is a significant environmental issue that affects all aspects of life on Earth.
To know more about Energy visit:
https://brainly.com/question/30672691
#SPJ11
A light ray strikes a flat, L = 2.0-cm-thick block of glass (n = 1.5) in Fig. 21 42 at an angle of 0 = 30° with the normal. (a) Find the angles of incidence and refraction at each surface. (b) Calculate the lateral shift of the light ray d.
When a light ray strikes a flat block of glass at an angle of 30° with the normal, with a thickness of 2.0 cm and a refractive index of 1.5, the angles of incidence and refraction at each surface can be calculated. Additionally, the lateral shift of the light ray can be determined.
(a) To find the angles of incidence and refraction at each surface, we can use Snell's law. The law states that the ratio of the sine of the angle of incidence to the sine of the angle of refraction is equal to the ratio of the refractive indices of the two media involved.
Let's assume the first surface of the block as the interface where the light enters. The angle of incidence is given as 30° with the normal. The refractive index of glass is 1.5. Using Snell's law, we can calculate the angle of refraction at this surface.
n1 * sin(θ1) = n2 * sin(θ2)
1 * sin(30°) = 1.5 * sin(θ2)
sin(θ2) = (1 * sin(30°)) / 1.5
θ2 = sin^(-1)((1 * sin(30°)) / 1.5)
Similarly, for the second surface where the light exits the block, the angle of incidence would be the angle of refraction obtained from the first surface, and the angle of refraction can be calculated using Snell's law again.
(b) To calculate the lateral shift of the light ray, we can use the formula:
d = t * tan(θ1) - t * tan(θ2)
where 't' is the thickness of the block (2.0 cm), and θ1 and θ2 are the angles of incidence and refraction at the first surface, respectively.
Substituting the values, we can find the lateral shift of the light ray.
Learn more about light ray here ;
https://brainly.com/question/32184600
#SPJ11
An object is located 3cm in front of a concave mirror whose
radius of curvature is 12cm. Find (a) the focal length of the
mirror and (b) position of the image. Describe the image.
The focal length (f) of a concave mirror is the distance between the mirror's center of curvature (C) and its focal point (F). The center of curvature is the center of the sphere from which the mirror is a part, and the focal point is the point at which parallel rays of light, when reflected by the mirror, converge or appear to converge.
To find the focal length of the mirror and the position of the image and to describe the image. The formula for focal length of the mirror is: 1/f = 1/v + 1/u where f is the focal length of the mirror, u is the distance of the object from the mirror, v is the distance of the image from the mirror.
(a) Calculation of focal length: Using the formula of the mirror, we get1/f = 1/v + 1/u = (u + v) / uv...[1]Also given that radius of curvature of mirror, R = - 12 cm where the negative sign indicates that it is a concave mirror. Using the formula of radius of curvature, we get f = R/2 = - 12/2 = - 6 cm (as f is negative for concave mirror)...[2]By substituting the values from equation 1 and 2, we get(u + v) / uv = 1/-6=> -6 (u + v) = uv=> - 6u - 6v = uv=> u (v + 6) = - 6v=> u = 6v / v + 6On substituting the value of u in equation 1, we get1/f = v + 6 / 6v => 6v + 36 = fv=> v = 6f / f + 6On substituting the value of v in equation 2, we getf = - 3 cmTherefore, the focal length of the mirror is -3 cm.
(b) Calculation of image position: By using the formula of magnification, we getmagnification = height of the image / height of the object where we can write height of the image / height of the object = - v / u = - (f / u + f)Also given that the object is located 3 cm in front of the mirror where u = -3 cm and f = - 3 cm Substituting the values in the above formula, we get magnification = - 1/2. It means the size of the image is half of the object. Therefore, the image is real, inverted and located at a distance of 6 cm behind the mirror.
For similar problems on ray optics visit:
https://brainly.com/question/13088184
#SPJ11
(a) Calculate the classical momentum of a proton traveling at 0.979c, neglecting relativistic effects. (Use 1.67 ✕ 10−27 for the mass of the proton.)
(b) Repeat the calculation while including relativistic effects.
(c) Does it make sense to neglect relativity at such speeds?
yes or no
No, it does not make sense to neglect relativistic effects at speeds close to the speed of light. Neglecting relativity would lead to an incorrect estimation of the momentum of a proton traveling at 0.979c. Including relativistic effects is essential to accurately calculate the momentum in such scenarios.
(a) Neglecting relativistic effects:
To calculate the classical momentum of a proton without considering relativity, we can use the formula for classical momentum:
p = mv
where p is the momentum, m is the mass of the proton, and v is its velocity. Substituting the given values, we have:
m = 1.67 × 10^(-27) kg (mass of the proton)
v = 0.979c (velocity of the proton)
p = (1.67 × 10^(-27) kg) × (0.979c)
Calculating the numerical value, we obtain the classical momentum of the proton without considering relativistic effects.
(b) Including relativistic effects:
When speed approach the speed of light, classical physics is inadequate, and we must account for relativistic effects. In relativity, the momentum of a particle is given by:
p = γmv
where γ is the Lorentz factor and is defined as γ = 1 / sqrt(1 - (v^2/c^2)), where c is the speed of light in a vacuum.
Considering the same values as before and using the Lorentz factor, we can calculate the relativistic momentum of the proton.
(c) Does it make sense to neglect relativity at such speeds?
No, it does not make sense to neglect relativity at speeds close to the speed of light. At high velocities, relativistic effects become significant, altering the behavior of particles. Neglecting relativity in calculations would lead to incorrect predictions and inaccurate results. To accurately describe the momentum of particles traveling at relativistic speeds, it is essential to include relativistic effects in the calculations.
Learn more about speed of light here:
brainly.com/question/28224010
#SPJ11
(a) The classical momentum of a proton traveling at 0.979c, neglecting relativistic effects, can be calculated using the formula p = mv. Given the mass of the proton as 1.67 × 10^(-27) kg, the momentum is 3.28 × 10^(-19) kg·m/s.
(b) When including relativistic effects, the momentum calculation requires the relativistic mass of the proton, which increases with velocity. The relativistic mass can be calculated using the formula m_rel = γm, where γ is the Lorentz factor given by γ = 1/sqrt(1 - (v/c)^2). Using the relativistic mass, the momentum is calculated as p_rel = m_rel * v. At 0.979c, the relativistic momentum is 4.03 × 10^(-19) kg·m/s.
(c) No, it does not make sense to neglect relativity at such speeds because relativistic effects become significant as the velocity approaches the speed of light. Neglecting relativistic effects would lead to inaccurate results, as demonstrated by the difference in momentum calculated with and without considering relativity in this example.
Explanation:
(a) The classical momentum of an object is given by the product of its mass and velocity, according to the formula p = mv. In this case, the mass of the proton is given as 1.67 × 10^(-27) kg, and the velocity is 0.979c, where c is the speed of light. Plugging these values into the formula, the classical momentum of the proton is found to be 3.28 × 10^(-19) kg·m/s.
(b) When traveling at relativistic speeds, the mass of an object increases due to relativistic effects. The relativistic mass of an object can be calculated using the formula m_rel = γm, where γ is the Lorentz factor. The Lorentz factor is given by γ = 1/sqrt(1 - (v/c)^2), where v is the velocity and c is the speed of light. In this case, the Lorentz factor is calculated to be 3.08. Multiplying the relativistic mass by the velocity, the relativistic momentum of the proton traveling at 0.979c is found to be 4.03 × 10^(-19) kg·m/s.
(c) It does not make sense to neglect relativity at such speeds because as the velocity approaches the speed of light, relativistic effects become increasingly significant. Neglecting these effects would lead to inaccurate calculations. In this example, we observe a notable difference between the classical momentum and the relativistic momentum of the proton. Neglecting relativity would underestimate the momentum and fail to capture the full picture of the proton's behavior at high velocities. Therefore, it is crucial to consider relativistic effects when dealing with speeds approaching the speed of light.
Learn more about speed of light here:
brainly.com/question/29216893
#SPJ11
An electron is at a distance of 9.00 cm from a proton What is the potential energy of the electron-proton system? (e=1.60x10-19 C, K-8 99x109 Nmc2 O 347x10-70 -150x108 O 284x10-26) 0256x10-27
In order to determine the potential energy of the electron-proton system, it is necessary to use Coulomb's law, which states that the electric force between two charges is proportional to the product of the charges and inversely proportional to the square of the distance between them.
The formula for potential energy is given by the product of the charges divided by the distance between them. The equation for the potential energy of the electron-proton system is shown below: U=k_e(q_e) (q_p)/d where U = potential energy k_e = Coulomb's constant = 8.99 x 10^9 N m^2/C^2q_e = charge of electron = -1.60 x 10^-19 Cq_p = charge of proton = 1.60 x 10^-19 Cd = distance between electron and proton = 9.00 cm = 0.09 m Now, we can plug in the values and solve for U:U = (8.99 x 10^9 N m^2/C^2)(-1.60 x 10^-19 C)(1.60 x 10^-19 C)/(0.09 m)U = -3.60 x 10^-18 J Therefore, the potential energy of the electron-proton system is -3.60 x 10^-18 J.
To know more about potential energy visit
https://brainly.com/question/24284560
#SPJ11
calculate the rotational inertia of a meter stick, with mass 0.56 kg, about an axis perpendicular to the stick and located at the 20 cm mark. (treat the stick as a thin rod.) (a) 1.1 kgm2 (b) 3.2 kgm2 (c) 4.2 kgm2 (d) 0.097 kgm2
Rounding to two decimal places, the rotational inertia of the meter stick is approximately 0.097 kgm^2. Therefore, the correct answer is (d) 0.097 kgm^2.
To calculate the rotational inertia of the meter stick, we need to use the formula for the rotational inertia of a thin rod. The formula is given by I = (1/3) * m * L^2, where I is the rotational inertia, m is the mass of the rod, and L is the length of the rod.
In this case, the mass of the meter stick is given as 0.56 kg, and the length of the stick is 1 meter. Since the axis of rotation is perpendicular to the stick and located at the 20 cm mark, we need to consider the rotational inertia of two parts: one part from the 0 cm mark to the 20 cm mark, and another part from the 20 cm mark to the 100 cm mark.
For the first part, the length is 0.2 meters and the mass is 0.2 * 0.56 = 0.112 kg. Plugging these values into the formula, we get:
I1 = (1/3) * 0.112 * (0.2)^2 = 0.00149 kgm^2.
For the second part, the length is 0.8 meters and the mass is 0.8 * 0.56 = 0.448 kg. Plugging these values into the formula, we get:
I2 = (1/3) * 0.448 * (0.8)^2 = 0.09504 kgm^2.
Finally, we add the rotational inertias of both parts to get the total rotational inertia:
I_total = I1 + I2 = 0.00149 + 0.09504 = 0.09653 kgm^2.
Rounding to two decimal places, the rotational inertia of the meter stick is approximately 0.097 kgm^2. Therefore, the correct answer is (d) 0.097 kgm^2.
To know more about length visit:
https://brainly.com/question/32060888
#SPJ11
20 At new moon, the Earth, Moon, and Sun are in line, as indicated in figure. Find the direction and the magnitude of the net gravitational force exerted on (a) Earth, (b) the Moon, and the Sun,
At new moon, the Earth, Moon, and Sun are in a straight line, with the Earth in the middle. The gravitational force exerted by the Sun on the Earth is greater than the gravitational force exerted by the Moon on the Earth, so the net gravitational force on the Earth points towards the Sun. The magnitude of the net gravitational force on the Earth is equal to the sum of the gravitational forces exerted by the Sun and the Moon on the Earth.
The gravitational force exerted by the Earth on the Moon is greater than the gravitational force exerted by the Sun on the Moon, so the net gravitational force on the Moon points towards the Earth. The magnitude of the net gravitational force on the Moon is equal to the sum of the gravitational forces exerted by the Earth and the Sun on the Moon.
The gravitational force exerted by the Moon on the Sun is much smaller than the gravitational force exerted by the other planets on the Sun, so the net gravitational force on the Sun is negligible.
The direction and magnitude of the net gravitational force exerted on each object are:
Earth: Points towards the Sun. Magnitude is equal to the sum of the gravitational forces exerted by the Sun and the Moon on the Earth.Moon: Points towards the Earth. Magnitude is equal to the sum of the gravitational forces exerted by the Earth and the Sun on the Moon.Sun: Negligible.To know more about the gravitational force refer here,
https://brainly.com/question/31808913#
#SPJ11
Complete question :
At new moon, the Earth, Moon, and Sun are in a line, as indicated in the figure(Figure 1) . A) Find the magnitude of the net gravitational force exerted on the Earth. B) Find the direction of the net gravitational force exerted on the Earth. Toward or Away from the Sun. C) Find the magnitude of the net gravitational force exerted on the Moon. D) Find the direction of the net gravitational force exerted on the Moon. Toward the Earth or Toward the Sun. E) Find the magnitude of the net gravitational force exerted on the Sun. F) Find the direction of the net gravitational force exerted on the Sun. Toward or away from the earth-moon system.
1. Find the capacitance of the spherical capacitor of inner radius ( 4 cm) and outer radius ( 8 cm). Select one: a. 14.82 PF b. 2.97 PF C. 26.69 PE d. 8.9 PF
The correct option is b. 2.97 pF.
The capacitance of the spherical capacitor of inner radius 4 cm and outer radius 8 cm can be calculated using the formula;
C = 4πε (ab / a+b)
where,
a is the radius of the inner sphere,
b is the radius of the outer sphere, and
ε is the permittivity of free space which is 8.85 x 10-12 F/m.
Therefore, substituting the given values into the above formula,
we have;
C = 4πε (ab / a+b)
C = 4 × 3.142 × 8.85 × 10-12 (4 × 8 × 10-2 / 4 + 8 × 10-2)
C = 2.97 pF
Therefore, the capacitance of the spherical capacitor of inner radius 4 cm and outer radius 8 cm is 2.97 pF.
Hence, the correct option is b. 2.97 pF.
Note that the charge (Q) on a capacitor is determined by Q = CV,
where V is the voltage applied across the plates of the capacitor.
Learn more about capacitance from this link:
https://brainly.com/question/25884271
#SPJ11
4) Mars has an atmosphere composed almost entirely of CO2 with an average temperature of -63°C. a) What is the rms speed of a molecule of carbon dioxide in Mars atmosphere? (5pts) b) Without further calculations, how would the speed of CO2 on mars compare to that of CO2 on Venus where the average temperature is 735K? (3 pt)
As the temperature of Venus is much higher than that of Mars, the rms speed of CO2 molecules on Venus will be much greater than that on Mars.
a) Root mean square speed of a molecule of carbon dioxide in Mars' atmosphere can be determined using the formula given below:
[tex]$$v_{rms} = \sqrt{\frac{3kT}{m}}$$[/tex]
Where; T = Average temperature of Mars atmosphere = -63°C = 210K
m = mass of one molecule of carbon dioxide = 44 g/mol = 0.044 kg/mol
k = Boltzmann constant
= [tex]1.38 \times 10^{23}[/tex] J/K
Putting the above values in the formula, we get;
[tex]$$v_{rms} = \sqrt{\frac{3 x 1.38 x 10^{-23} x 210}{0.044 x 10^{-3}}}$$[/tex]
Simplifying the above expression, we get;
[tex]$$v_{rms} = 374 m/s$$[/tex]
Thus, the root mean square speed of a molecule of carbon dioxide in Mars' atmosphere is 374 m/s.
b) Without further calculations, the speed of CO2 on Mars will be much lower than that on Venus where the average temperature is 735 K.
This is because the rms speed of a molecule of carbon dioxide is directly proportional to the square root of temperature (v_{rms} ∝ √T).
As the temperature of Venus is much higher than that of Mars, the rms speed of CO2 molecules on Venus will be much greater than that on Mars.
To know more about rms speed, visit:
https://brainly.com/question/32089624
#SPJ11
a). The rms speed of a molecule of carbon dioxide in Mars atmosphere is approximately 157.08 m/s.
b). Without further calculations, the speed of CO2 on Mars is less than that of CO2 on Venus where the average temperature is 735K.
Molecular weight of CO2 = 44 g/mol
Average Temperature of Mars = -63°C = 210K
Formula used: rms speed = √(3RT/M)
where,
R = Gas constant (8.314 J/mol K)
T = Temperature in Kelvin
M = Molecular weight of gasa)
The rms speed of a molecule of carbon dioxide in Mars atmosphere is given by,
rms speed = √(3RT/M)
= √(3 x 8.314 x 210 / 0.044)≈ 157.08 m/s
Therefore, the rms speed of a molecule of carbon dioxide in Mars atmosphere is approximately 157.08 m/s.
b) Without further calculations, the speed of CO2 on Mars is less than that of CO2 on Venus where the average temperature is 735K because the higher the temperature, the higher the speed of the molecules, as the temperature of Venus is higher than Mars, so it is safe to assume that CO2 molecules on Venus would have a higher speed than Mars.
Therefore, without further calculations, the speed of CO2 on Mars is less than that of CO2 on Venus where the average temperature is 735K.
To know more about molecule, visit:
https://brainly.com/question/32298217
#SPJ11