1. An airplane flying at 50.0 m/s is bringing food and emergency first aid supplies to a camp. The plan is for the pilot to drop the supplies so that they land on an "X" marked on the ground 150 m below. a. How long will it take the supplies to fall to the ground? (You can ignore the effect of air resistance.) b. How far in front of the "X" should the pilot release the supplies so that they land directly on the "X"?

Answers

Answer 1

a. The supplies will take approximately 3.04 seconds to fall to the ground.

b. The pilot should release the supplies 152 meters in front of the "X" to ensure they land directly on iwith the help of kinematic equation .

a. To calculate the time it takes for the supplies to fall to the ground, we can use the kinematic equation:h = 0.5 * g * t^2

Where:

h = height = 150 m

g = acceleration due to gravity = 9.8 m/s^2 (approximate value on Earth)

t = time

Rearranging the equation to solve for t:t = √(2h / g)

Substituting the given values:t = √(2 * 150 / 9.8)

t ≈ 3.04 seconds

b. To find the horizontal distance the supplies should be released in front of the "X," we can use the equation of motion:d = v * t

Where:

d = distance

v = horizontal velocity = 50.0 m/s (given)

t = time = 3.04 seconds (from part a)

Substituting the values:d = 50.0 * 3.04

d ≈ 152 meters

Therefore, the pilot should release the supplies approximately 152 meters in front of the "X" to ensure they land directly on it.

To know more kinematic equation click here.

brainly.com/question/24458315?

#SPJ11


Related Questions

How much energy in calories (to 2 significant figures) is
required to melt 7.6 grams of 0C ice ?

Answers

The specific heat capacity of water is 4.18 J/(g⋅K), and the heat of fusion of water is 6.01 kJ/mol. Therefore, in order to find the energy required to melt 7.6 grams of 0°C ice, we can use the following formula:

Q = m × (ΔHfus); Q is the energy needed (joules), m is the mass, and ΔHfus is the heat of fusion.

Converting joules to calories: 1 cal = 4.184 J. So, the energy required in calories can be found by dividing Q by 4.184.

Using the molar mass of water, we can convert the heat of fusion from joules per mole to joules per gram. Water's molar mass is 18 g/mol. Therefore, the heat of fusion of water in joules per gram is:

ΔHfus = (6.01 kJ/mol) ÷ (18.02 g/mol)

ΔHfus = 334 J/g

Substituting the values we have in the formula for Q:

Q = (7.6 g) × (334 J/g)Q = 2538.4 J

To convert from joules to calories, we divide by 4.184:Q = 2538.4 J ÷ 4.184Q = 607 cal

Therefore, the energy required to melt 7.6 grams of 0°C ice is approximately 607 calories (to 2 significant figures).

Here's another question on calories: https://brainly.com/question/28589779

#SPJ11

A hair dryer and a curling iron have resistances of 15 Q2 and 25 Q2, respectively, and are connected in series. They are connected to a 60 V battery. Calculate the power used by the hair dryer. A hair dryer and a curling iron have resistances of 15 2 and 25 2, respectively, and are connected in series. They are connected to a 60 V battery. Calculate the power used by the curling iron.

Answers

The power used by the hair dryer is 240 watts. To calculate the power used by each appliance, we need to use the formulas for power and resistance. The power formula is:

P = V^2 / R:

P is the power in watts (W)

V is the voltage in volts (V)

R is the resistance in ohms (Ω)

Resistance of the hair dryer, R_hairdryer = 15 Ω

Voltage across the hair dryer, V_hairdryer = 60 V

P_hairdryer = V_hairdryer^2 / R_hairdryer

= (60 V)^2 / 15 Ω

= 3600 V^2 / 15 Ω

= 240 W

Therefore, the power used by the hair dryer is 240 watts.

Learn more about resistance here : brainly.com/question/14547003
#SPJ11

An open cylindrical tank with radius of 0.30 m and a height of 1.2 m is filled with water. Determine the spilled volume of the water if it was rotated by 90 rpm.
Choices:
a) 0.095 cu.m.
b) 0.085 cu.m.
c) 0.047 cu.m.
d) 0.058 cu.m.

Answers

The spilled volume of water from the open cylindrical tank, when rotated at 90 rpm, is approximately 0.095 cubic meters.

When the cylindrical tank is rotated, the water inside experiences centrifugal force. This force pushes the water towards the outer edges of the tank, causing it to rise and potentially spill over. To determine the spilled volume, we need to calculate the difference in height between the water level at rest and the water level when the tank is rotating at 90 rpm.

First, we calculate the circumference of the tank using the formula: circumference = 2πr, where r is the radius. Plugging in the given radius of 0.30 meters, we get a circumference of approximately 1.89 meters.

Next, we need to determine the distance traveled by a point on the water's surface when the tank completes one revolution at 90 rpm. To do this, we use the formula: distance = (circumference × rpm) / 60. Substituting the values, we find the distance traveled per minute is approximately 2.98 meters.

Since the tank has a height of 1.2 meters, the ratio of the distance traveled to the tank height is approximately 2.48. This means that the water level will rise by 2.48 times the height of the tank when rotating at 90 rpm.

Finally, we calculate the spilled volume by subtracting the initial height of the water from the increased height. The spilled volume is given by the formula: volume = πr^2(h_new - h_initial), where r is the radius and h_new and h_initial are the new and initial heights of the water, respectively.

Plugging in the values, we get: volume = π(0.3^2)(1.2 × 2.48 - 1.2) ≈ 0.095 cubic meters.Therefore, the spilled volume of water is approximately 0.095 cubic meters.

Learn more about spilled volume

brainly.com/question/11799197

#SPJ11

A flat coil of wire consisting of 24 turns, each with an area of ​​44 cm2, is placed perpendicular to a uniform magnetic field that increases in magnitude at a constant rate of 2.0 T to 6.0 T in 2.0 s. If the coil has a total resistance of 0.84 ohm, what is the magnitude of the induced current (A)? Give your answer to two decimal places.

Answers

The magnitude of the induced current is 0.47 A.

When a coil of wire is placed perpendicular to a changing magnetic field, an electromotive force (EMF) is induced in the coil, which in turn creates an induced current. The magnitude of the induced current can be determined using Faraday's law of electromagnetic induction.

In this case, the coil has 24 turns, and each turn has an area of 44 cm². The changing magnetic field has a constant rate of increase from 2.0 T to 6.0 T over a period of 2.0 seconds. The total resistance of the coil is 0.84 ohm.

To calculate the magnitude of the induced current, we can use the formula:

EMF = -N * d(BA)/dt

Where:

EMF is the electromotive force

N is the number of turns in the coil

d(BA)/dt is the rate of change of magnetic flux

The magnetic flux (BA) through each turn of the coil is given by:

BA = B * A

Where:

B is the magnetic field

A is the area of each turn

Substituting the given values into the formulas, we have:

EMF = -N * d(BA)/dt = -N * (B2 - B1)/dt = -24 * (6.0 T - 2.0 T)/2.0 s = -48 V

Since the total resistance of the coil is 0.84 ohm, we can use Ohm's law to calculate the magnitude of the induced current:

EMF = I * R

Where:

I is the magnitude of the induced current

R is the total resistance of the coil

Substituting the values into the formula, we have:

-48 V = I * 0.84 ohm

Solving for I, we get:

I = -48 V / 0.84 ohm ≈ 0.47 A

Therefore, the magnitude of the induced current is approximately 0.47 A.

Learn more about induced current

brainly.com/question/31686728

#SPJ11

A current circulates around a 2. 10-mm-diameter superconducting ring. What is the ring's magnetic dipole moment? Express your answer in amper-meters squared with the appropriate units. What is the on-axis magnetic field strength 5.10 cm from the ring? Express your answer with the appropriate units.

Answers

The magnetic dipole moment of the superconducting ring is 3.48 × 10⁻⁹ I A·m² and the magnetic field strength of the ring is 1.70 × 10⁻⁸ I T.

Given the following values:Diameter (d) = 2.10 mm   Radius (r) = d/2

Magnetic Permeability of Free Space = μ = 4π × 10⁻⁷ T·m/A

The magnetic dipole moment (µ) of the superconducting ring can be calculated by the formula:µ = Iπr²where I is the current that circulates around the ring, π is a mathematical constant (approx. 3.14), and r is the radius of the ring.Substituting the known values, we have:µ = Iπ(2.10 × 10⁻³/2)²= 3.48 × 10⁻⁹ I A·m² .

The magnetic field strength (B) of the superconducting ring at a point 5.10 cm from the ring (on its axis) can be calculated using the formula:B = µ/4πr³where r is the distance from the ring to the point where the magnetic field strength is to be calculated.Substituting the known values, we have:B = (3.48 × 10⁻⁹ I)/(4π(5.10 × 10⁻²)³)= 1.70 × 10⁻⁸ I T (answer to second question)

Hence, the magnetic dipole moment of the superconducting ring is 3.48 × 10⁻⁹ I A·m² and the magnetic field strength of the ring is 1.70 × 10⁻⁸ I T.

For further information on Magnetic field strength visit :

https://brainly.com/question/31307493

#SPJ11

A steel section of the Alaskan pipeline had a length of 56.6 m and a temperature of 19.9°C when it was installed. What is its change in length when the temperature drops to a frigid -30.6°C? Take α steel = 1.2×10-5 (C°)-1

Answers

The change in length of the steel section when the temperature drops to -30.6°C is -0.036 meters.

To calculate the change in length of the steel section when the temperature drops, we can use the formula:

ΔL = α * L * ΔT

where:

ΔL is the change in length,α is the coefficient of linear expansion,L is the initial length, andΔT is the change in temperature.

In this case, the coefficient of linear expansion for steel (α steel) is given as 1.2×10^(-5) (C°)^(-1). The initial length (L) is 56.6 m. The change in temperature (ΔT) is -30.6°C - 19.9°C = -50.5°C.

Plugging these values into the formula, we can calculate the change in length (ΔL):

ΔL = (1.2×10^(-5) (C°)^(-1)) * (56.6 m) * (-50.5°C)

Simplifying the equation:

ΔL = -0.036 m

Therefore, the change in length of the steel section when the temperature drops to -30.6°C is -0.036 meters.

To learn more about coefficient of linear expansion, Visit:

https://brainly.com/question/23207743

#SPJ11

1. What is the gravitational energy (relative to the unstretched surface of the trampoline) of the 20 kg ball at its apex 2 m above the trampoline?
E= mgh = 20(10)(2) =400 J Therefore, the gravitational energy is 400 J.
2. What is the kinetic energy of the ball just before impacting the trampoline?
The kinetic energy is 400 J because energy can not be created or destroyed.
3. At maximum stretch at the bottom of the motion, what is the sum of the elastic and gravitational energy of the ball?
I need help with question 3
use g= 10 N/kg

Answers

At maximum stretch at the bottom of the motion, the sum of the elastic and gravitational energy of the ball is 800 J.

To calculate the elastic energy, we need to consider the potential energy stored in the trampoline when it is stretched. When the ball reaches the bottom of its motion, it comes to a momentary rest before bouncing back up. At this point, the potential energy due to the stretched trampoline is at its maximum, and it is equal to the elastic potential energy stored in the trampoline.

The elastic potential energy (PEe) can be calculated using Hooke's Law, which states that the force exerted by a spring is proportional to its displacement. The formula for elastic potential energy is given as:

PEe = (1/2)k[tex]x^2[/tex]

Where k is the spring constant and x is the displacement from the equilibrium position. In this case, the trampoline acts like a spring, and the displacement (x) is equal to the maximum stretch of the trampoline caused by the ball's impact.

Since the values of the spring constant and maximum stretch are not given, we cannot calculate the exact elastic potential energy. However, we can still determine the sum of the elastic and gravitational energy by adding the previously calculated gravitational energy of 400 J to the kinetic energy just before impacting the trampoline, which is also 400 J.

Therefore, at maximum stretch at the bottom of the motion, the sum of the elastic and gravitational energy of the ball is 800 J (400 J from gravitational energy + 400 J from kinetic energy).

To know more about gravitational energy here https://brainly.com/question/15896499

#SPJ4

A solenoid with 32 turns per centimeter carries a current I. An electron moves within the solenoid in a circle that has a radius of 2.7 cm and is perpendicular to the axis of the solenoid. If the speed of the electron is 4.0 x 105 m/s, what is I (in A)?

Answers

When a current flows through a solenoid, it generates a magnetic field. The magnetic field is strongest in the center of the solenoid and its strength decreases as the distance from the center of the solenoid increases.

The magnetic field produced by a solenoid can be calculated using the following formula:[tex]B = μ₀nI[/tex].

where:B is the magnetic fieldμ₀ is the permeability of free spacen is the number of turns per unit length of the solenoidI is the current flowing through the solenoid.The magnetic field produced by a solenoid can also be calculated using the following formula:B = µ₀nI.

When an electron moves in a magnetic field, it experiences a force that is perpendicular to its velocity. This force causes the electron to move in a circular path with a radius given by:r = mv/qB.

where:r is the radius of the circular path m is the mass of the electron v is the velocity of the electronq is the charge on the electronB is the magnetic fieldThe speed of the electron is given as v = 4.0 x 10⁵ m/s.

To know more about solenoid visit:

https://brainly.com/question/21842920

#SPJ11

A simple pendulum consists of a ball connected to one end of a thin brass wire. The period of the pendulum is 1.04 s. The temperature rises by 134 C, and the length of the wire increases. Determine the change in the period of the heated pendulum

Answers

The change in period of the heated pendulum is 0.016 s.

From the given information, the initial period of the pendulum T₀ = 1.04s

Let, ΔT be the change in period of the heated pendulum. We know that the time period of the pendulum depends upon its length, L and acceleration due to gravity, g.

Time period, T ∝√(L/g)On heating the pendulum, the length of the pendulum wire increases, say ΔL.

Then, the new length of the wire,

L₁ = L₀ + ΔL Where L₀ is the initial length of the wire.

Given that, the temperature increases by 13°C.

Let α be the coefficient of linear expansion for brass. Then, the increase in length of the wire is given by,

ΔL = L₀ α ΔT Where ΔT is the rise in temperature.

Substituting the values in the above equation, we have

ΔT = (ΔL) / (L₀ α)

ΔT = [(L₀ + ΔL) - L₀] / (L₀ α)

ΔT = ΔL / (L₀ α)

ΔT = (α ΔT ΔL) / (L₀ α)

ΔT = (ΔL / L₀) ΔT

ΔT = (1.04s / L₀) ΔT

On substituting the values, we get

1.04s / L₀ = (ΔL / L₀) ΔT

ΔT = (1.04s / ΔL) × (ΔL / L₀)

ΔT = 1.04s / L₀

ΔT = 1.04s × 3.4 × 10⁻⁵ / 0.22

ΔT = 0.016s

Hence, the change in period of the heated pendulum is 0.016 s.

Note: The time period of a pendulum is given by the relation, T = 2π √(L/g)Where T is the time period of the pendulum, L is the length of the pendulum and g is the acceleration due to gravity.

Learn more about simple pendulum https://brainly.com/question/26449711

#SPJ11

Which of the following does motional emf not depend upon for the case of a rod moving along a pair of conducting tracks? Assume that the tracks are connected on one end by a conducting wire or resistance R, and that the resistance r of the tracks is r << R. The rod itself has negligible resistance.
Group of answer choices
a. The resistances R and r
b. The speed of the rod
c. the length of the rod
d. the strength of the magnetic field

Answers

Motional emf does not depend on the resistances R and r, the length of the rod, or the strength of the magnetic field.

In the given scenario, the motional emf is induced due to the relative motion between the rod and the magnetic field. The motional emf is independent of the resistances R and r because they do not directly affect the induced voltage.

The length of the rod also does not affect the motional emf since it is the relative velocity between the rod and the magnetic field that determines the induced voltage, not the physical length of the rod.

Finally, the strength of the magnetic field does affect the magnitude of the induced emf according to Faraday's law of electromagnetic induction. Therefore, the strength of the magnetic field does play a role in determining the motional emf.

To learn more about  magnetic field

Click here brainly.com/question/19542022

#SPJ11

Use the following information for Questions 1-2: Consider a particle with mass, m, in an infinite potential well with a width L. The particle was initially in the first excited state 2. What is the expectation value of energy, (Ĥ)? Express your answer in terms of mass, m, width, L, reduced Planck's constant, hbar and a constant pi. Note that your answer does not have to include all of these variables. Preview will appear here... Enter math expression here Expectation value of energy Now suppose the particle was initially in a superposition state = (₁+₂) where 1 and 2 are the two lowest energy eigenstates, respectively. What is the expectation value of energy, (H)? Express your answer in terms of mass, m, width, L, reduced Planck's constant, hbar and a constant pi. Note that your answer does not have to include all of these variables.

Answers

Question 1: The expectation value of energy (Ĥ) for a particle in the first excited state of an infinite potential well can be calculated as follows:

Ĥ = (2^2 * hbar^2 * pi^2) / (2 * m * L^2)

Where H is the Hamiltonian operator, Ψ is the wave function representing the particle in the excited state, and ⟨ ⟩ denotes the expectation value.In this case, the particle is in the first excited state, which corresponds to the second energy eigenstate. The energy eigenvalues for the particle in an infinite potential well are given by:

E_n = (n^2 * hbar^2 * pi^2) / (2mL^2)

Where n is the quantum number for the energy eigenstate.

Since the particle is in the first excited state, n = 2. Plugging this value into the energy eigenvalue equation, we get:

E_2 = (4 * hbar^2 * pi^2) / (2mL^2) = (2 * hbar^2 * pi^2) / (mL^2)

Therefore, the expectation value of energy for the particle in the first excited state is:

Ĥ = ⟨Ψ|H|Ψ⟩ = E_2 = (2 * hbar^2 * pi^2) / (mL^2)

Question 2: To calculate the expectation value of energy (H) for a particle initially in a superposition state |Ψ⟩ = (|1⟩ + |2⟩), where |1⟩ and |2⟩ are the two lowest energy eigenstates, we need to find the energy expectation values for each state and then take the sum.

The energy expectation value for each state can be calculated using the formula:

E_n = ⟨n|H|n⟩

where n is the quantum number for the energy eigenstate.

For the two lowest energy eigenstates, the energy expectation values are:

E_1 = ⟨1|H|1⟩

E_2 = ⟨2|H|2⟩

The expectation value of energy (H) is then given by:

H = ⟨Ψ|H|Ψ⟩ = (|1⟩ + |2⟩) * H * (|1⟩ + |2⟩) = |1⟩ * H * |1⟩ + |2⟩ * H * |2⟩

Substituting the energy expectation values, we have:

H = E_1 * ⟨1|1⟩ + E_2 * ⟨2|2⟩ = E_1 + E_2

Therefore, the expectation value of energy for the particle in the superposition state |Ψ⟩ = (|1⟩ + |2⟩) is:

H = E_1 + E_2 = ⟨1|H|1⟩ + ⟨2|H|2⟩.

To learn more about expectation value of energy, Click here:

https://brainly.com/question/14689485

#SPJ11

A spherical mirror is polished on both sides. When the concave side is used as a mirror, the magnification is +2.1. What is the magnification when the convex side is used as a mirror, the object remaining the same distance from the mirror? If the object is
inverted, then enter a negative number. Otherwise, enter a positive number.

Answers

The convex mirror side of the spherical mirror is used, the magnification is -2.1, indicating an inverted image, when the spherical mirror is polished on both side.

To find the magnification when the convex side of a spherical mirror is used, we can use the mirror formula:

1/f = 1/v - 1/u

Where:

f is the focal length of the mirror,

v is the image distance,

u is the object distance.

Given that the magnification when the concave side is used is +2.1, we know that the magnification (m) is given by:

m = -v/u

Since the object distance remains the same, we can use the magnification formula to find the magnification when the convex side is used.

Let's assume that the object distance is denoted by u and the image distance is denoted by v'.

Since the object distance (u) remains the same, we can write:

m' = -v'/u

Now, to find the magnification when the convex side is used, we need to find the image distance (v') using the mirror formula.

Since the object is inverted, the magnification should be negative. Therefore, we are looking for a negative value for m'.

Now, let's find v' using the mirror formula.

Given:

m = +2.1 (for the concave side)

m' = ? (for the convex side)

u = constant (same as before)

Since the object distance remains the same, we can equate the magnification formulas for the concave and convex sides:

m = m'

-2.1 = -v'/u

Simplifying the equation, we get:

v' = 2.1u

Now, substituting this value of v' into the magnification formula for the convex side:

m' = -v'/u

= -(2.1u)/u

= -2.1

Therefore, when the convex side of the spherical mirror is used, the magnification is -2.1, indicating an inverted image.

To know more about  convex mirror please refer:

https://brainly.com/question/7512320

#SPJ11

For a double-slit configuration where the slit separation is 4 times the slit width, how many bright interference fringes lie in the central peak of the diffraction pattern?

Answers

For a double-slit configuration where the slit separation is 4 times the slit width, only one bright interference fringe lies in the central peak of the diffraction pattern.

In a double-slit interference pattern, the bright interference fringes occur when the path difference between the waves from the two slits is an integer multiple of the wavelength of light. The central peak of the diffraction pattern corresponds to the point where the path difference is zero.

Given that the slit separation is 4 times the slit width, we can denote the slit separation as "d" and the slit width as "w".

Therefore, we have:

d = 4w

To find the number of bright interference fringes in the central peak, we need to determine the condition for constructive interference at the center. This occurs when the path difference is zero, which means the waves from the two slits are in phase.

For the central peak, the path difference is zero, so we have:

mλ = 0

where "m" is the order of the fringe and λ is the wavelength of light.

Since the path difference is zero, we can write:

d*sinθ = mλ

where θ is the angle between the central peak and the fringes.

For the central peak, sinθ = 0, which means θ = 0. Substituting this into the equation, we have:

d*sin0 = mλ

0 = mλ

Since sinθ = 0, this implies that the only solution for m is m = 0. Therefore, there is only one bright interference fringe in the central peak of the diffraction pattern.

In summary, for a double-slit configuration where the slit separation is 4 times the slit width, only one bright interference fringe lies in the central peak of the diffraction pattern.

Learn more about Bright Interference Fringes at

brainly.com/question/29487127

#SPJ4

If a proton is in an infinite box in the n=14 state and its energy is 0.55MeV, what is the wavelength of this proton (in fm)?
A hydrogen atom has an electron in the n-6 state. What is the speed of this electron in the Bohr model (in)?

Answers

The wavelength of the proton in fm is 24.4 fm, and the speed of the electron in the Bohr model is 2.19 × 10^6 m/s.In quantum mechanics, Schrodinger's equation and Bohr's model are two crucial concepts. These theories contribute greatly to our knowledge of quantum mechanics.

The Schrodinger wave equation is a mathematical equation that describes the motion of particles in a wave-like manner. Bohr's model of the atom is a model of the hydrogen atom that depicts it as a positively charged nucleus and an electron revolving around it in a circular orbit. To determine the wavelength of the proton, the following formula can be used:

λ = h/p

where, h is Planck’s constant and p is the momentum of the proton.

Momentum is the product of mass and velocity, which can be calculated as follows:

p = mv

where, m is the mass of the proton and v is its velocity. Since the proton is in the 14th state,n = 14 and the energy is 0.55 MeV, which can be converted to joules.

E = 0.55 MeV = 0.55 × 1.6 × 10^-13 J= 8.8 × 10^-14 J

The energy of the particle can be computed using the following equation:

E = (n^2h^2)/(8mL^2)

Where, L is the length of the box and m is the mass of the proton. Solving for L gives:

L = √[(n^2h^2)/(8mE)]

Substituting the values gives:

L = √[(14^2 × 6.63 × 10^-34 J s)^2/(8 × 1.67 × 10^-27 kg × 8.8 × 10^-14 J)] = 2.15 × 10^-14 m

The momentum of the proton can now be calculated:

p = mv = (1.67 × 10^-27 kg)(2.15 × 10^-14 m/s)= 3.6 × 10^-21 kg m/s

Now that the proton's momentum is known, its wavelength can be calculated:

λ = h/p = (6.63 × 10^-34 J s)/(3.6 × 10^-21 kg m/s) = 24.4 fm

Therefore, the wavelength of the proton is 24.4 fm. Next, to calculate the speed of the electron in the Bohr model, the following formula can be used: mv^2/r = kze^2/r^2

where, m is the mass of the electron, v is its velocity, r is the radius of the electron's orbit, k is Coulomb's constant, z is the number of protons in the nucleus (which is 1 for hydrogen), and e is the electron's charge.

Solving for v gives:

v = √[(kze^2)/mr]

Substituting the values and solving gives:

v = √[(9 × 10^9 Nm^2/C^2)(1.6 × 10^-19 C)^2/(9.11 × 10^-31 kg)(5.3 × 10^-11 m)] = 2.19 × 10^6 m/s

Therefore, the speed of the electron in the Bohr model is 2.19 × 10^6 m/s.

For further information on Bohrs model visit:

https://brainly.com/question/13606024

#SPJ11

"An electron in a 1D box has a minimum energy of 3 eV. What is
the minimum energy if the box is 2x as long?
A. 3/2 eV
B. 3 eV
C 3/4 eV
D. 0 eV"

Answers

We are given the minimum energy of an electron in a 1D box is 3 eV and we need to find the minimum energy of the electron if the box is 2x as long.The energy of the electron in a 1D box is given by:E = (n²π²ħ²)/(2mL²)Where, E is energy,n is a positive integer representing the quantum number of the electron, ħ is the reduced Planck's constant,m is the mass of the electron and L is the length of the box.

If we increase the length of the box to 2L, the energy of the electron will beE' = (n²π²ħ²)/(2m(2L)²)E' = (n²π²ħ²)/(8mL²)From the given data, we know that the minimum energy in the original box is 3 eV. This is the ground state energy, so n = 1 and substituting the given values we get:3 eV = (1²π²ħ²)/(2mL²)Solving for L², we get :L² = (1²π²ħ²)/(2m×3 eV)L² = (1.85×10⁻⁹ m²/eV)Now we can use this value to calculate the new energy:E' = (1²π²ħ²)/(8mL²)E' = (3/4) (1²π²ħ²)/(2mL²)E' = (3/4)(3 eV)E' = 2.25 eV. Therefore, the minimum energy of the electron in the 2x longer box is 2.25 eV. Hence, the correct option is C) 3/4 eV.

Learn more about electron:

brainly.com/question/2969220

#SPJ11

Match each description of property of a substance with the most appropriate of the three common states of matter. If the property may apply to more than one state of matter, match it to the choice that lists all states of matter that are appropriate. Some choices may go unused. Hint a ✓ Atoms and molecules in it are significantly attracted to neighboring atoms and molecules. can carry a sound wave takes on the shape of the container retains its own shape and size takes on the size of the container g f a f fis included as "fluids" a. solids b. solids and gases c. liquids d. gases e. solids and liquids f. liquids and gases g. solids, liquids, and gases

Answers

Atoms and molecules in it are significantly attracted to neighboring atoms and molecules. - a. solids ,Can carry a sound wave - c. liquids ,Takes on the shape of the container - f. liquids and gases ,Retains its own shape and size - a. solids, Takes on the size of the container - g. solids, liquids, and gases,The property of being a fluid is included as "fluids" - f. liquids and gases

Matching the descriptions with the appropriate states of matter:

Atoms and molecules in it are significantly attracted to neighboring atoms and molecules: a. solids

Can carry a sound wave: c. liquids

Takes on the shape of the container: f. liquids and gases

Retains its own shape and size: a. solids

Takes on the size of the container: g. solids, liquids, and gases

The property of being a fluid is included as "fluids": f. liquids and gases

The descriptions of properties of substances are matched with the most appropriate states of matter as follows:

Solids are characterized by significant attraction between atoms and molecules, retaining their own shape and size.

Liquids can carry a sound wave, take on the shape of the container, and are included in the category of fluids.

Gases take on the size of the container and are also included in the category of fluids.

Solids are characterized by significant attractions between atoms and molecules, and they retain their own shape and size. Liquids can carry sound waves, take on the size of the container, and are included in the category of fluids. Gases take on the shape of the container. Both solids and liquids can take on the size of the container.

To know more about sound wave, visit:

https://brainly.com/question/1173066

#SPJ11

Your task in physics lab is to make a microscope from two lenses. One lens has a focal length of 12 cm , the other a focal length of 2.0 cm . You plan to use the more powerful lens as the objective, and you want its image to be 16 cm from the lens, as in a standard biological microscope.a) How far should the objective lens be from the object to produce a real image 16 cm from the objective? In cm
b) What will be the magnification of your microscope?

Answers

Based on the calculation, we can conclude that the distance of the objective lens from the object should be 32 cm to produce a real image 16 cm from the objective. And the magnification of the microscope will be 0.5.

a) In cm To calculate the distance of the objective lens from the object, we will use the lens formula, which states that 1/u + 1/v = 1/f, where u is the distance of the object from the lens, v is the distance of the image from the lens, and f is the focal length of the lens.The objective lens has a focal length of 2.0 cm, and its image will be 16 cm away from it. 1/u + 1/v = 1/f1/u + 1/16 = 1/2u = 32 cm. Therefore, the objective lens should be 32 cm away from the object to produce a real image 16 cm from the objective.

b) The magnification of a microscope is defined as the ratio of the size of the image seen through the microscope to the size of the object.To calculate the magnification, we will use the formula:Magnification = v/u, where v is the distance of the image from the lens, and u is the distance of the object from the lens.Magnification = v/u = 16/32 = 0.5. Therefore, the magnification of the microscope will be 0.5, which means that the image seen through the microscope will be half the size of the object.

To know more about focal length visit:

brainly.com/question/2194024

#SPJ11

quantum physics question please help \
Question 2 Consider a crystal in 3 dimensions, in which each unit cell contributes Zvalence electrons and there are N unit cells (ons) per band. Which of the following is true? O For Zodd, the crystal

Answers

For Z odd, the crystal will have partially filled bands. This is a characteristic of crystals with an odd number of valence electrons and has implications for the electronic properties of the crystal.

In a crystal, the valence electrons determine the electronic properties and behavior. The number of valence electrons contributed by each unit cell is denoted by Zvalence. Additionally, the crystal consists of N unit cells.

When Zvalence is odd, it means that there is an odd number of valence electrons contributed by each unit cell. In this case, the bands in the crystal will be partially filled. This is because for each band, there are two possible spin states for each electron (spin up and spin down). With an odd number of electrons, one spin state will be occupied by an electron, while the other spin state will remain unoccupied, resulting in partially filled bands.

For a crystal with Z odd, the bands will be partially filled due to the odd number of valence electrons contributed by each unit cell. This is a characteristic of crystals with an odd number of valence electrons and has implications for the electronic properties of the crystal.

To know more about crystal visit:  

https://brainly.com/question/1325088

#SPJ11

Simple Harmonic Oscillator. For a CO (carbon monoxide) molecule, assume that the system vibrates at o=4.0.1014 [Hz]. a. Wavefunction: Sketch the wave function for the n=5 state of the SHO. Points will be given on qualitative accuracy of the solution. Include a brief description to help me understand critical components of your sketch and label the sketch appropriately. b. Probabilities: Make a qualitatively correct sketch that indicates the probability of finding the state as a function of interatomic separation for n=5 indicate any important features. (Sketch plus 1 sentence). c. Classical turning points: Calculate the probability that the interatomic distance is outside the classically allowed region for the n=1 state

Answers

a. For the n=5 state of the SHO, the wavefunction is a symmetric Gaussian curve centered at the equilibrium position, with decreasing amplitudes as you move away from it.

b. The probability of finding the n=5 state as a function of interatomic separation is depicted as a plot showing a peak at the equilibrium position and decreasing probabilities as you move away from it.

c. The probability of the interatomic distance being outside the classically allowed region for the n=1 state of the SHO is negligible, as the classical turning points are close to the equilibrium position and the probability significantly drops away from it.

a. Wavefunction: The wave function for the n=5 state of the Simple Harmonic Oscillator (SHO) can be represented by a Gaussian-shaped curve centered at the equilibrium position. The amplitude of the curve decreases as you move away from the equilibrium position. The sketch should show a symmetric curve with a maximum at the equilibrium position and decreasing amplitudes as you move towards the extremes.

b. Probabilities: The probability of finding the state as a function of interatomic separation for the n=5 state of the SHO can be depicted as a plot with the probability density on the y-axis and the interatomic separation on the x-axis. The sketch should show a peak at the equilibrium position and decreasing probabilities as you move away from the equilibrium. The important feature to highlight is that the probability distribution extends beyond the equilibrium position, indicating the possibility of finding the molecule at larger interatomic separations.

c. Classical turning points: In the classical description of the Simple Harmonic Oscillator, the turning points occur when the total energy of the system equals the potential energy. For the n=1 state, the probability of the interatomic distance being outside the classically allowed region is negligible. The classical turning points are close to the equilibrium position, and the probability of finding the molecule significantly drops as you move away from the equilibrium.

Learn more about Probability from the link given below.

https://brainly.com/question/31828911

#SPJ4

17). If you were to live another 65 years and there was a starship ready to go right now, how fast would it have to be going for you to live long enough to get to the galactic center (30,000 1.y.)? How fast would you have to go to reach the Andromeda Galaxy (2.54 million 1.y.)? 18). A friend tells you that we should ignore claims of climate change on Earth, because the scientists making such claims are simply relying on their authority as scientists (argument from authority) to support their claims. What are the problems with your friend's claim? This friend is far from alone... 19). To get a de Broglie wave that is visible to human eyes (size-wise, not visibility-wise, so 1 > 0,1 mm), of an particle, what particle should it be and what is the greatest speed it can be moving?

Answers

17) The required speed to reach the galactic center or the Andromeda Galaxy is obtained by dividing the distance by the time.

18) Dismissing scientific claims solely based on authority (argument from authority) overlooks the rigorous scientific process and the wealth of evidence supporting claims like climate change.

19) Achieving a visible-sized de Broglie wave would require a particle with low mass (e.g., an electron) to approach speeds near the speed of light, which is currently not attainable.

17) To calculate the speed required to reach the galactic center or the Andromeda Galaxy within a given time frame, we can use the equation:

Speed = Distance / Time

For the galactic center:

Distance = 30,000 light-years = 30,000 * 9.461 × 10^15 meters (approx.)

Time = 65 years = 65 * 365 * 24 * 3600 seconds (approx.)

Speed = (30,000 * 9.461 × 10^15 meters) / (65 * 365 * 24 * 3600 seconds)

Calculating this value gives the required speed in meters per second.

For the Andromeda Galaxy:

Distance = 2.54 million light-years = 2.54 million * 9.461 × 10^15 meters (approx.)

Time = 65 years = 65 * 365 * 24 * 3600 seconds (approx.)

Speed = (2.54 million * 9.461 × 10^15 meters) / (65 * 365 * 24 * 3600 seconds)

Calculating this value gives the required speed in meters per second.

18) The claim made by your friend that scientists are simply relying on their authority as scientists (argument from authority) to support claims of climate change on Earth has several problems. Firstly, it is a logical fallacy to dismiss scientific claims solely based on the authority of the scientists making them. Scientific claims should be evaluated based on the evidence, data, and rigorous research methods used to support them.

Furthermore, the consensus on climate change is not solely based on the authority of individual scientists but is the result of extensive research, data analysis, and peer review within the scientific community. There is a wealth of scientific evidence supporting the existence and impact of climate change, including observed temperature increases, melting glaciers, and changing weather patterns. Ignoring or dismissing these claims without proper scientific analysis undermines the importance of scientific consensus and the rigorous process of scientific inquiry.

19) To obtain a de Broglie wave visible to human eyes (with a size greater than 0.1 mm), the particle should have a relatively small mass and a corresponding wavelength within the visible light range.

According to the de Broglie equation:

Wavelength = h / momentum

To achieve a visible-sized de Broglie wave, the wavelength needs to be on the order of 0.1 mm or larger. This corresponds to the visible light range of the electromagnetic spectrum.

Particles with low mass and high velocity can exhibit shorter wavelengths. For example, electrons or even smaller particles like neutrinos could potentially have wavelengths in the visible light range if they are moving at high speeds. However, the velocity of these particles would need to be extremely close to the speed of light, which is not currently achievable in practice.

In summary, to obtain a visible-sized de Broglie wave, a particle with low mass (such as an electron) would need to be moving at a velocity very close to the speed of light.

learn more about "distance ":- https://brainly.com/question/26550516

#SPJ11

A 180 ohm resistor can dissipate a maximum power of .250W. Calculate the maximum current that it can carry and still meet this limitation.

Answers

As 180-ohm resistor can dissipate a maximum power of .250W The maximum current that can pass through the resistor while meeting the power limit is 0.027 A which can be obtained by the formula P = I²R

The resistance of the resistor, R = 180 Ω. The maximum power dissipated by the resistor, P = 0.250 W. We need to find the maximum current that can be passed through the resistor while maintaining the power limit. The maximum power that can be dissipated by the resistor is given by the formula;

P = I²R …………… (1)

Where; P = Power in watts, I = Current in amperes, and R = Resistance in ohms.

Rewriting the above equation, we get,

I = √(P / R) ………… (2)

Substitute the given values into the equation 2 and solve for the current,

I = √(0.250 / 180)

⇒I = 0.027 A

The maximum current that can pass through the resistor while meeting the power limit is 0.027 A.

Learn more about power: https://brainly.com/question/24858512

#SPJ11

What is the range of a 4-MeV deuteron in gold (in um)?

Answers

The range of a 4-MeV deuteron in gold is approximately 7.5 micrometers (μm).

Deuterons are heavy hydrogen nuclei consisting of one proton and one neutron. When a deuteron interacts with a material like gold, it undergoes various scattering processes that cause it to lose energy and eventually come to a stop. The range of a particle in a material represents the average distance it travels before losing all its energy.

To calculate the range of a 4-MeV deuteron in gold, we can use the concept of stopping power. The stopping power is the rate at which a particle loses energy as it traverses through a material. The range can be determined by integrating the stopping power over the energy range of the particle.

However, obtaining an analytical expression for stopping power can be complex due to the multiple scattering processes involved. Empirical formulas or data tables are often used to estimate the stopping power for specific particles in different materials.

Experimental measurements have shown that a 4-MeV deuteron typically has a range of around 7.5 μm in gold. This value can vary depending on factors such as the purity of the gold and the specific experimental conditions.

To know more about stopping power, refer here:

https://brainly.com/question/31962952#

#SPJ11

Susan's 10.0 kg baby brother Paul sits on a mat. Susan pulls the mat across the floor using a rope that is angled 30∘ above the floor. The tension is a constant 31.0 N and the coefficient of friction is 0.210.
Use work and energy to find Paul's speed after being pulled 2.90 m .

Answers

Paul's speed after being pulled at distance of 2.90 m is approximately 2.11 m/s

Mass of Paul (m) = 10.0 kg

Angle of the rope (θ) = 30°

Tension force (T) = 31.0 N

Coefficient of friction (μ) = 0.210

Distance pulled (d) = 2.90 m

First, let's calculate the work done by the tension force:

Work done by tension force (Wt) = T * d * cos(θ)

Wt = 31.0 N * 2.90 m * cos(30°)

Wt = 79.741 J

Next, let's calculate the work done by friction:

Work done by friction (Wf) = μ * m * g * d

where g is the acceleration due to gravity (approximately 9.8 m/s²)

Wf = 0.210 * 10.0 kg * 9.8 m/s² * 2.90 m

Wf = 57.471 J

The net work done on Paul is the difference between the work done by the tension force and the work done by friction:

Net work done (Wnet) = Wt - Wf

Wnet = 79.741 J - 57.471 J

Wnet = 22.270 J

According to the work-energy principle, the change in kinetic energy (ΔKE) is equal to the net work done:

ΔKE = Wnet

ΔKE = 22.270 J

Since Paul starts from rest, his initial kinetic energy is zero (KE_initial = 0). Therefore, the final kinetic energy (KE_final) is equal to the change in kinetic energy:

KE_final = ΔKE = 22.270 J

We can use the kinetic energy formula to find Paul's final speed (v):

KE_final = 0.5 * m * v²

22.270 J = 0.5 * 10.0 kg * v²

22.270 J = 5.0 kg * v²

Dividing both sides by 5.0 kg:

v² = 4.454

Taking the square root of both sides:

v ≈ 2.11 m/s

Therefore, Paul's speed after being pulled at a distance of 2.90 m is approximately 2.11 m/s.

Learn more about tension force:

https://brainly.com/question/30343908

#SPJ11

Q C Review. A light spring has unstressed length 15.5cm . It is described by Hooke's law with spring constant. 4.30 N/m .One end of the horizontal spring is held on a fixed vertical axle, and the other end is attached to a puck of mass m that can move without friction over a horizontal surface. The puck is set into motion in a circle with a period of 1.30s .Evaluate x for (b) m=0.0700kg

Answers

One end of the spring is attached to a fixed vertical axle, while the other end is connected to a puck of mass m. The puck moves without friction on a horizontal surface in a circular motion with a period of 1.30 s.

The unstressed length of the light spring is 15.5 cm, and its spring constant is 4.30 N/m.

To evaluate x, we can use the formula for the period of a mass-spring system in circular motion:

T = 2π√(m/k)

Rearranging the equation, we can solve for x:

x = T²k / (4π²m)

Substituting the given values:

T = 1.30 s
k = 4.30 N/m
m = 0.0700 kg

x = (1.30 s)²(4.30 N/m) / (4π²)(0.0700 kg)

Calculate this expression to find the value of x.

to learn more about vertical axle

https://brainly.com/question/34191913

#SPJ11

10. [0/8.33 Points] DETAILS PREVIOUS ANSWERS OSUNIPHYS1 13.4.WA.031. TUTORIAL. Two planets P, and P, orbit around a star Sin crcular orbits with speeds v.46.2 km/s, and V2 = 59.2 km/s respectively (6) If the period of the first planet P, 7.60 years, what is the mass of the star it orbits around? x kg 5 585010 (b) Determine the orbital period of Py: yr

Answers

(a) The mass of the star that P1 orbits is 5.85 x 10^30 kg.

(b) The orbital period of P2 is 9.67 years.

The mass of a star can be calculated using the following formula:

M = (v^3 * T^2) / (4 * pi^2 * r^3)

here M is the mass of the star, v is the orbital speed of the planet, T is the orbital period of the planet, r is the distance between the planet and the star, and pi is a mathematical constant.

In this case, we know that v1 = 46.2 km/s, T1 = 7.60 years, and r1 is the distance between P1 and the star. We can use these values to calculate the mass of the star:

M = (46.2 km/s)^3 * (7.60 years)^2 / (4 * pi^2 * r1^3)

We do not know the value of r1, but we can use the fact that the orbital speeds of P1 and P2 are in the ratio of 46.2 : 59.2. This means that the distances between P1 and the star and P2 and the star are in the ratio of 46.2 : 59.2.

r1 / r2 = 46.2 / 59.2

We can use this ratio to calculate the value of r2:

r2 = r1 * (59.2 / 46.2)

Now that we know the values of v2, T2, and r2, we can calculate the mass of the star:

M = (59.2 km/s)^3 * (9.67 years)^2 / (4 * pi^2 * r2^3)

M = 5.85 x 10^30 kg

The orbital period of P2 can be calculated using the following formula:

T = (2 * pi * r) / v

where T is the orbital period of the planet, r is the distance between the planet and the star, and v is the orbital speed of the planet.

In this case, we know that v2 = 59.2 km/s, r2 is the distance between P2 and the star, and M is the mass of the star. We can use these values to calculate the orbital period of P2:

T = (2 * pi * r2) / v2

T = (2 * pi * (r1 * (59.2 / 46.2))) / (59.2 km/s)

T = 9.67 years

To learn more about orbital period click here: brainly.com/question/31543880

#SPJ11

Question 6 6 pts A 2,210 kg car accelerates from rest to a velocity of 22 m/s in 15 seconds. The power of the engine during this acceleration is, (Answer in kw)

Answers

Answer:

The answer is 71.5 kW

Explanation:

We can use the formula for power:

Power = Force x Velocity

where Force is the net force acting on the car, and Velocity is the velocity of the car.

To find the net force, we can use Newton's second law of motion:

Force = Mass x Acceleration

where Mass is the mass of the car, and Acceleration is the acceleration of the car.

The acceleration of the car can be found using the formula:

Acceleration = (Final Velocity - Initial Velocity) / Time

Substituting the given values, we get:

Acceleration = (22 m/s - 0 m/s) / 15 s

Acceleration = 1.47 m/s^2

Substituting the given values into the formula for force, we get:

Force = 2,210 kg x 1.47 m/s^2

Force = 3,247.7 N

Finally, substituting the calculated values for force and velocity into the formula for power, we get:

Power = Force x Velocity

Power = 3,247.7 N x 22 m/s

Power = 71,450.6 W

Converting the power to kilowatts (kW), we get:

Power = 71,450.6 W / 1000

Power = 71.5 kW

Therefore, the power of the engine during the acceleration is 71.5 kW.

Calculate the de broglie wavelength of a neutron moving at 1.00 of the speed of light.

Answers

The de Broglie wavelength of a neutron moving at 1.00 of the speed of light is approximately 0.0656 nanometers (nm).

The de Broglie wavelength is a concept in quantum mechanics that relates the momentum of a particle to its wavelength. It can be calculated using the de Broglie wavelength formula:

λ = h / p

where λ is the de Broglie wavelength, h is the Planck's constant (approximately 6.626 × 10^-34 J·s), and p is the momentum of the particle.

Given:

Light Speed  (c) = 3.00 × 10^8 m/s

Neutron Speed  (v) = 1.00 × c

The momentum (p) of a particle can be calculated as:

p = m * v

where

m = mass of the neutron.

The mass of a neutron (m) is approximately 1.675 × 10^-27 kg.

Substituting the values into the equations:

p = (1.675 × 10^-27 kg) * (3.00 × 10^8 m/s)

≈ 5.025 × 10^-19 kg·m/s

calculate the de Broglie wavelength

λ = (6.626 × 10^-34 J·s) / (5.025 × 10^-19 kg·m/s)

≈ 1.315 × 10^-15 m

Converting the de Broglie wavelength to nanometers:

λ = (1.315 × 10^-15 m) * (10^9 nm/1 m)

≈ 0.0656 nm

Therefore, the de Broglie wavelength of a neutron moving at 1.00 of the speed of light is approximately 0.0656 nanometers (nm).

The de Broglie wavelength of a neutron moving at 1.00 of the speed of light is approximately 0.0656 nm.

To know more about wavelength, visit:

https://brainly.com/question/10750459

#SPJ11

Pilings are driven into the ground at a buiding site by dropping a 2050 kg object onto theri. What ehange in gravitational potential enerify does the object undergo if it is released from rest 17,0 m above the jorvund and ends up 130 rabove the growad?

Answers

The change in gravitational potential energy that the object undergoes if it is released from rest 17.0 m above the ground and ends up 1.30m above the ground is -28,869.5 J.

The change in gravitational potential energy is equal to the product of the object's mass, gravitational acceleration, and the difference in height or altitude (initial and final heights) of the object.

In other words, the formula for gravitational potential energy is given by : ΔPEg = m * g * Δh

where

ΔPEg is the change in gravitational potential energy.

m is the mass of the object.

g is the acceleration due to gravity

Δh is the change in height or altitude

Here, the object has a mass of 2050 kg and is initially at a height of 17.0 m above the ground and then falls to 1.30 m above the ground.

Thus, Δh = 17.0 m - 1.30 m = 15.7 m

ΔPEg = 2050 kg * 9.81 m/s² * 15.7 m

ΔPEg = 319,807.35 J

The object gained 319,807.35 J of gravitational potential energy.

However, the question is asking for the change in gravitational potential energy of the object.

Therefore, the final step is to subtract the final gravitational potential energy from the initial gravitational potential energy.

The final gravitational potential energy can be calculated using the final height of the object.

Final potential energy = m * g * hfinal= 2050 kg * 9.81 m/s² * 1.30 m = 26,618.5 J

Thus, ΔPEg = PEfinal - PEinitial

ΔPEg = 26,618.5 J - 346,487.0 J

ΔPEg = -28,869.5 J

Therefore, the change in gravitational potential energy that the object undergoes is -28,869.5 J.

To learn more about gravitational potential energy :

https://brainly.com/question/3120930

#SPJ11

8)The electric field in a sine wave has a peak value of 32.6 mV/m. Calculate the magnitude of the Poynting vector in this case.

Answers

The Poynting vector is the power density of an electromagnetic field.

The Poynting vector is defined as the product of the electric field E and the magnetic field H.

The Poynting vector in this case can be calculated by:

S = E × H

where E is the electric field and H is the magnetic field.

E/B = c

where c is the speed of light and B is the magnetic field.

[tex]E/B = c⇒ B = E/c⇒ B = (32.6 × 10⁻³)/(3 × 10⁸) = 1.087 × 10⁻¹¹[/tex]

The magnitude of the magnetic field H is then:

B = μH

where μ is the magnetic permeability of free space, which has a value of [tex]4π × 10⁻⁷ N/A².[/tex]

[tex]1.087 × 10⁻¹¹/(4π × 10⁻⁷) = 8.690H = 5 × 10⁻⁷[/tex]

The Poynting vector is then:

[tex]S = E × H = (32.6 × 10⁻³) × (8.6905 × 10⁻⁷) = 2.832 × 10⁻⁹ W/m²[/tex]

The magnitude of the Poynting vector in this case is 2.832 × 10⁻⁹ W/m².

To know more about Poynting visit:

https://brainly.com/question/19530841

#SPJ11

Question 14 1 points A 865 kg car traveling east collides with a 2.241 kg truck traveling west at 24.8 ms. The car and the truck stick together after the colision. The wreckage moves west at speed of 903 m/s What is the speed of the car in (n)? (Write your answer using 3 significant figures

Answers

The speed of the car is given by the absolute value of its velocity, so the speed of the car is approximately 906 m/s (rounded to three significant figures).

Let's denote the initial velocity of the car as V_car and the initial velocity of the truck as V_truck. Since the car is traveling east and the truck is traveling west, we assign a negative sign to the truck's velocity.

The total momentum before the collision is given by:

Total momentum before = (mass of car * V_car) + (mass of truck * V_truck)

After the collision, the car and the truck stick together, so they have the same velocity. Let's denote this velocity as V_wreckage.
The total momentum after the collision is given by:

Total momentum after = (mass of car + mass of truck) * V_wreckage

According to the conservation of momentum, these two quantities should be equal:

(mass of car * V_car) + (mass of truck * V_truck) = (mass of car + mass of truck) * V_wreckage

Let's substitute the given values into the equation and solve for V_car:

(865 kg * V_car) + (2.241 kg * (-24.8 m/s)) = (865 kg + 2.241 kg) * (-903 m/s)

Simplifying the equation: 865V_car - 55.582m/s = 867.241 kg * (-903 m/s)

865V_car = -783,182.823 kg·m/s + 55.582 kg·m/s

865V_car = -783,127.241 kg·m/s

V_car = -783,127.241 kg·m/s / 865 kg

V_car ≈ -905.708 m/s

The speed of the car is given by the absolute value of its velocity, so the speed of the car is approximately 906 m/s (rounded to three significant figures).

To learn more about  velocity:

https://brainly.com/question/18084516

#SPJ11

Other Questions
identify and explain the general rules for neurotransmitterssecreted by pre-and postganglionic neurons in the autonomicdivision of the nervous system. include the types of receptors theybind to Which of the following is considered a medical emergency? A) Testicular torsion B) Hydrocele C) Spermatocele (D) Bacterial epididymitis An object is 2m away from a convex mirror in a store, its imageis 1 m behind the mirror. What is the focal length of themirror? Find the first six terms of each sequence. an = n + 1 A nurse is caring for a client with a syndrome of inappropriate antidiuretic hormone(SIADH). Which of the following assessments should the nurse notify the healthcare provider?a) Ankle edemab) Tachypncac) Jugular vein distensiond) Bounding pulses *** Chapter 9 Discussion A After reading and reviewing Chapter 9 and watching the video(s), answer the following discussion question. Make sure to include relevant points to your answer and make sure that your information is correctly cited. You must post before you can see the posts of others. Responses should be at least 7-10 sentences. Why should developmental milestones only be used as a general guideline for normal child development? After you post, reply to two peers. In your reply, explain why you agree or disagree and add support to your peer's arguments. Chapter 9 Discussion A After reading and reviewing Chapter 9 and watching the video(s), answer the following discussion question. Make sure to include relevant points to your answer and make sure that your information is correctly cited. You must post before you can see the posts of others. Responses should be at least 7-10 sentences. Why should developmental milestones only be used as a general guideline for normal child development? After you post, reply to two peers. In your reply, explain why you agree or disagree and add support to your peer's arguments. Show that the substitution u = y' leads to a Bernoulli equation. Solve this equation (see Section 2.5). xy" = y' + (y') C (C-1) 1 Cx Cx - + D X . 5. Which of the following is/are correct about a sound wave? A. B. C. Infrasound is visible to the eye. Sound waves can travel in a conductor. Sound wave travels in a vacuum at 3 x 108 m/s. a standard number of cube is tossed . find p(greater than 3 or odd) Suppose you bought a Call option for $3.00 on company ABCD stock with an exercize price of $60.At the time of expiration, ABCD stock is trading for $65.How much is the Call Option Payoff at the time of expiration?Enter your answer in the following format: 1.23 Hint: Answer is between 1.82 and 2.2 trial-and-error method of problem solving used when an algorithmic or mathematical approach is calle 1. The "fundamental problem of communication" - as expressed by Shannon - is for the receiver to be able to identify what data was generated by the source, based on the signal it receives through the channel. The above principles are expressed in Information Theory, briefly explain the principles of the Information Theory, in your explanation include the following: - Information Content - Information Measure - Entropy [20 Marks] 2. There are two theorems that are brought out in Information Theory namely Channel Coding and Source Code Theorem. Discuss the details expressed in these two theorems. [20 Marks] 3. During data transmission data suffers a lot of disturbances that leads to transmission impairments. Describe the impairments that may be present during data transmission. [20 Marks] 4. Transmission impairments usually results in transmission errors, according to data communication principles, data should be error free at the end of the transmission link. Describe in details with illustrations using diagrams how errors are detected and controlled during data transmission, in your description the following must be brought out: - Different error detection techniques (Parity Checking, Check Sum, CRC) - Different flow control techniques (Stop-And-Wait ARQ. Go-Back-N ARQ. Selective-Repeat ARQ) [40 Marks] What would you suggest doing in order to reduce the stigma ofopioid use and increase community support? Events of history and mythology inform a variety of Minoan objects and sites. How did archaeologists draw from that knowledge to uncover ancient sites and interpret objects? Identify two or three examples. How have interpretations of these sites changed over time? 4. Financial security with low degree risk and investment heldby businesses is classified asA. treasury billsB. commercial paperC. negotiable certificate of depositD. money market mutual funds Assignment 1 Ethical problem/ Dilemma Post-treatment, patients, and family members often present healthcare practitioners and staff with gifts to show their gratitude. Critics, however, feel that gifts cheapen the medical practice and may render recipients to become driven only by them which may influence their judgement It is your first year of practice as a medical office assistant, your patient Lin offered you a personal gift. Sure, you had been the recipient of many gifts-- flowers, chocolate candies, homemade food--but all had been shared with the entire staff. This situation was different: She gave you a personal gift. No note, no verbal thank-you-just a smile and a bow. You had first met Lin about 10 months before, when she was diagnosed with cancer. She had a devoted husband and 2 beautiful bays, both in elementary school; and barely spoke English. You were the medical office assistant who helped her understand her diagnosis, and her complex 2-year chemotherapy protocol, with all its adverse effects. She had just finished her initial phase of intense treatment and was transitioning to maintenance thera py What would you do? Will you accept the gift as an act of thank you from the patient or will you refuse it? Could the gift be viewed by others as a tip, bribe, or favor? Will accepting the gift change your professional relationship with this patient or any of your other patients? Check the Assignment's Rubrics, and in 1 page try to: 1- Identify your ethical problem 2- Gather the facts 3- Identify the affected parties 4- Identify your options and their consequences 5- Decide which proper ethical action you will choose Discuss the functions of the House of Commons, the Cabinet, and the Office of the prime Minister. 3.1 Identify the major powers of the House of Commons. 3.2 Describe how the House of Commons functions. 3.3 Explain the function of the Cabinet and the role of Cabinet Ministers. 3.4 Explain the role and powers of the Prime Minister of Canada. with regards to a homeostatic imbalance such as hypothermia andbased on your chosen profession (nursing) how would you manage apatient with this disorder Briefly explain ethical egoism. What do you think is the strongest argument in favor of ethical egoism? Why? What do you think is the strongest argument against ethical egoism? Why? Overall, do you think this is a good ethical theory? Why or why not? (250 words) Help please!! On edmentum