Answer:
It will go up to 93.75 m before it is moving at 20 m/s
Explanation:
As we know that
[tex]v^2 - u^2 = 2aS[/tex]
here v is the final speed i.e 20 m/s
u is the initial speed i.e 5 m/s
a is the acceleration due to gravity i.e 2 m/s^2
Substituting the given values in above equation, we get -
[tex]20^2 - 5^2 = 2*2*S\\S = 93.75[/tex]meters
the pygmy shrew has an average mass of 2.0 g if 49 of these shrew are placed on a spring scale with a spring constant of 24 N/m , what is the springs displacement
Answer:
Spring's displacement, x = -0.04 meters.
Explanation:
Let the spring's displacement be x.
Given the following data;
Mass of each shrew, m = 2.0 g to kilograms = 2/1000 = 0.002 kg
Number of shrews, n = 49
Spring constant, k = 24 N/m
We know that acceleration due to gravity, g is equal to 9.8 m/s².
To find the spring's displacement;
At equilibrium position:
Fnet = Felastic + Fg = 0
But, Felastic = -kx
Total mass, Mt = nm
Fg = -Mt = -nmg
-kx -nmg = 0
Rearranging, we have;
kx = -nmg
Making x the subject of formula, we have;
[tex] x = \frac {-nmg}{k} [/tex]
Substituting into the formula, we have;
[tex] x = \frac {-49*0.002*9.8}{24} [/tex]
[tex] x = \frac {-0.9604}{24} [/tex]
x = -0.04 m
Therefore, the spring's displacement is -0.04 meters.
Can the tangent line to a velocity vs. time graph ever be vertical? Explain.
Answer:
No. Because it would correspond to zero Instantaneous acceleration.
Explanation:
hope this helps
A 700-gram grinding wheel 22.0 cm in diameter is in the shape of a uniform solid disk. (We can ignore the small hole at the center.) When it is in use, it turns at a constant 215 rpm about an axle perpendicular to its face through its center. When the power switch is turned off, you observe that the wheel stops in 50.0 s with constant angular acceleration due to friction at the axle.
What torque does friction exert while this wheel is slowing down?
Solution :
Given :
Mass of grinding wheel, m = 700 g
= 0.7 kg
Diameter of the grinding wheel, d = 22 cm
= 0.22 m
Radius of the grinding wheel, r = 0.11 m
Initial angular velocity of grinding wheel, [tex]$\omega_0$[/tex] = 215 rpm
[tex]$=215 \ rpm \times \frac{2 \pi \ rad}{1 \ rev}\times \frac{1 \ min}{60 \ s}$[/tex]
where, [tex]$\pi = \frac{22}{7}$[/tex]
Time taken to stop, t = 50 s
Final angular velocity is [tex]$\omega$[/tex] = 0
Angular acceleration of the grinding wheel is given by :
[tex]$\alpha = \frac{\omega-\omega_0}{t}$[/tex]
[tex]$=\frac{0-215 \ rpm \times \frac{2 \pi \ rad}{1 \ rev}\times \frac{1 \ min}{60 \ s}}{50 \ s}$[/tex]
[tex]$=-0.45 \ rad/s^2$[/tex]
Magnitude of the angular acceleration of grinding wheel [tex]$\alpha$[/tex] [tex]$=-0.45 \ rad/s^2$[/tex]
Moment of inertia of the grinding wheel (solid disk),
[tex]$I=\frac{1}{2}mR^2$[/tex]
[tex]$=\frac{1}{2} \times 0.7 \times 0.11^2$[/tex]
[tex]$=4.235 \times 10^{-3} \ kgm^2$[/tex]
Torque exerted by friction while the wheel is slowing down is
[tex]$\tau = I \alpha$[/tex]
[tex]$=4.235 \times 10^{-3} \times 0.45$[/tex]
[tex]$=1.90 \times 10^{-3} \ Nm$[/tex]
define projectile in your own .
Answer:
a body which was thrown in space ,moves under the influence of gravity only is defined as projectile.
Answer:
projectile is defined as a body thrown in space , moves under the influence of gravity .hope it is you
Two long, straight wires are separated by a distance of 32.2 cm. One wire carries a current of 2.75 A, the other carries a current of 4.33 A. (a) Find the force per meter exerted on the 2.75-A wire. (b) Is the force per meter exerted on the 4.33-A wire greater than, less than, or the same as the force per meter exerted on the 2.75-A wire
Answer:
a)[tex]\frac{F_1}{L}=1.95*10^-^5N[/tex]
b)[tex]\frac{F_2}{L}=1.95*10^-^5N[/tex]
Explanation:
From the question we are told that:
Distance between wires [tex]d=32.2[/tex]
Wire 1 current [tex]I_1=2.75[/tex]
Wire 2 current [tex]I_2=4.33[/tex]
a)
Generally the equation for Force on [tex]l_1[/tex] due to [tex]I_2[/tex] is mathematically given by
[tex]F_1=I_1B_2L[/tex]
Where
B_2=Magnetic field current by [tex]I_2[/tex]
[tex]B_2=\frac{\mu *i_2}{2\pi d}[/tex]
Therefore
[tex]F_1=I_1B_2L[/tex]
[tex]F_1=I_1(\frac{\mu *i_2*l_1}{2\pi d})L[/tex]
[tex]\frac{F_1}{L} =\frac{4*\pi*10^{-7}*2.75*4.33*100 }{2*\pi*12.2 }[/tex]
[tex]\frac{F_1}{L}=1.95*10^-^5N[/tex]
b)
Generally the equation for Force on [tex]I_2[/tex] due to [tex]I_1[/tex] is mathematically given by
[tex]F_2=I_2B_1L[/tex]
Where
B_1=Magnetic field current by [tex]I_2[/tex]
[tex]B_1=\frac{\mu *I_1}{2\pi d}[/tex]
Therefore
[tex]\frac{F_2}{L} =I_2(\frac{\mu *I_1*I_2}{2\pi d})[/tex]
[tex]\frac{F_2}{L}=1.95*10^-^5N[/tex]
A negative charge of 4.0 x 10 C and a positive charge of 7.0 x 10 C are separated by 0.15 m. What is the force between the two charges?
Rich says that light is the same thing as electromagnetic radiation. Do you agree or
disagree with Rich? Explain your response.
Answer:
Yes, I agree with rich
Explanation:
Yes I agree with rich.
Thus is because;
The electromagnetic process is what will determine how electromagnetic radiation will be emitted. Now, the mode of travel of electromagnetic energy is in the form of waves and then the wavelength of these waves is what will enable us know the form of energy. This includes light, x-rays, gamma rays e.t.c. This means that light and the others are just parts of the spectrum emitted and are called photons.
Thus, light can be said to be electromagnetic radiation.
I can agree with Rich that light is the same as electromagnetic radiation since the two terms can conveniently be used interchangeably.
Light has become a generic term that is used to describe all electromagnetic waves. All the waves in the electromagnetic spectrum have different frequencies and wavelengths but they are travel at the same speed which has been designated as "speed of light".
Therefore, i can agree with Rich that light is the same as electromagnetic radiation since the two terms can conveniently be used interchangeably.
Learn more: https://brainly.com/question/865531?
What is oscillating to form a light wave?
O Electric and Magnetic Fields
O Matter
O Light is only a particle, not a wave
O The Luminiferous Aether
Which statement best describes work in the scientific sense?
O A. Work is the sum of the distances an object moves due to the
forces applied to it.
O B. Work is the number of tasks done in the amount of time needed to
complete them.
O C. Work is the ratio of the force acting on an object and the distance
the object travels.
O D. Work is the product of a force and the distance an object moves
because of the force.
Answer:
the answer is D I tought
Objects A and B, of mass M and 2M respectively, are each pushed a distance d straight up an inclined plane by a force F parallel to the plane. The coefficient of kinetic friction between each mass and the plane has the same value μ.k At the highest point is:______
a. KEA > KEB
b. KEA = KEB
c. KEA < KEB
d. The work done by F on A is greater than the work done by F on B.
e. The work done by F on A is less than the work done by F on B.
Answer:
The correct answer is option (A) that is KEA > KEB .
Explanation:
Let us calculate -
If the object is straighten up and inclined plane , the work done is
[tex]W=F_d- F_f_r_id-F_gh[/tex]
[tex]W=F_d-\mu_kmgdcos\theta-mgdsin\theta[/tex]
The change in kinetic energy is ,
[tex]\Delta K=\frac{1}{2}mv^2-\frac{1}{2}m\nu_0^2[/tex]
At the top of the inclined plane , the velocity is zero
So,
[tex]\Delta K=\frac{1}{2} m(0)^2-\frac{1}{2}m\nu_0^2[/tex]
[tex]\Delta KE=-\frac{1}{2}m\nu_0^2[/tex]
From the work energy theorem , we have [tex]W=-\Delta K[/tex] in case of friction , so
[tex]\frac{1}{2}m\nu_0^2=Fd-\mu_kmgdcos\theta-mgdsin\theta[/tex]
[tex]KE=Fd-\mu_kmgdcos\theta-mgdsin\theta[/tex]
For object A-
[tex]KE_A=Fd-\mu_kmgdcos\theta-mgdsin\theta[/tex]
For object B
[tex]KE_B= Fd -2\mu_kMgdcos\theta-2Mgdsin\theta[/tex]
[tex]KE_B= Fd -2(\mu_kMgdcos\theta-Mgdsin\theta)[/tex]
Thus , larger mass is going to mean less total work and a lower kinetic energy .
From the above results , we get
[tex]KE_A >KE_B[/tex]
Therefore , option A is correct .
describe briefly how you can a body
Answer:
what
you need to elaborate
Answer: Can you please write question clearly.
Explanation:
Drag each statement to the correct location on the table.
Match the characteristics with the states of matter.
does not have
a definite shape
or volume
has definite volume
but does not have a
definite shape
has a definite shape
and volume
changes to liquid
on heating
changes to liquid
on cooling
changes to solid
on cooling
Solid
Liquid
Gas
mentum. All rights reserved.
Answer:
Solid:
- has definite shape and volume.
- change to liquid on heating.
Liquid:
- has definite volume but does not have definite shape .
- changes to solid on cooling.
Gas :
- does not have definite shape or volume.
- change to liquid on cooling
How much energy must the brakes absorb to bring a 1200kg car from 30m/s to 15 m/s?
A cold block of metal feels colder than a block of wood at the same temperature. Why? A hot block of metal feels hotter than a block of wood at the same temperature. Again, why? Is there any temperature at which the two blocks feel equally hot or cold? What temperature is this?
: In general, metals feel colder or hotter to the touch than other materials at the same temperature because they're good thermal conductors. This means they easily transfer heat to colder objects or absorb heat from warmer objects
It is because the metal conducted heat faster than it feels colder than the wood, which conducted heat slower. Even tho they are similar temperatures. The metal will feel colder than the wood because of the thermal conductivity of the metal, compared to the wood.
A cart of mass m is moving with negligible friction along a track with known speed v1 to the right. It collides with and sticks to a cart of mass 4m moving with known speed v2 to the right. Which of the two principles, conservation of momentum and conservation of mechanical energy, must be applied to determine the final speed of the carts, and why
Answer:
conservation of linear momentum
We were told that two objects became stuck together hence we have to use the principle of conservation of momentum to obtain the final velocities of the carts.
What is conservation of momentum ?The principle of conservation of momentum lets us know that the momentum before collision is equal to the momentum after collision. As such we can write; m1u1 + m2u2 = m1v1 + m2v2.
We can use this thus principle to obtain the final speeds of the carts since the two objects that collided became stuck together.
Learn more about conservation of momentum: https://brainly.com/question/11256472
Determine the direction of the force on a charge.
a. along the line between the charge and the center of the square outward of the center
b. along the side of the square outward of the other charge that lies on the side
c. along the line between the charge and the center of the square toward the center
d. along the side of the square toward the other charge that lies on the side
Answer:
hi your question is incomplete below is the complete question
A charge of 2.15 mC is placed at each corner of a square 0.500 m on a side. Determine the direction of the force on a charge.
answer : Along the line between the charge and the center of the square outward of the center ( A )
Explanation:
The direction of the force on a charge is along the line between the charge and the center of the square outward of the center
Given that; Fnet = 3.17 * 10^-1 N ( calculated value )
The nature of the Force is repulsive in nature
attached below is a Pictorial representation of the direction of the force on a charge
g A high-speed flywheel in a motor is spinning at 500 rpm when a power failure suddenly occurs. The flywheel has mass 39.0kg and diameter 78.0cm. The power is off for 34.0s, and during this time the flywheel slows due to friction in its axle bearings. During the time the power is off, the flywheel makes 170 complete revolutions.At what rate is the flywheel spinning when the power comes back on?
Answer:
[tex]10.54\ \text{rad/s}[/tex]
Explanation:
[tex]\omega_i[/tex] = Initial angular velocity = 500 rpm = [tex]500\times \dfrac{2\pi}{60}\ \text{rad/s}[/tex]
[tex]\omega_f[/tex] = Final angular velocity
t = Time = 34 s
[tex]\theta[/tex] = Angular displacement = 170 revs = [tex]170\times 2\pi\ \text{rad}[/tex]
[tex]\alpha[/tex] = Angulr acceleration
From the kinematic equations of angular motion we have
[tex]\theta=\omega_it+\dfrac{1}{2}\alpha t^2\\\Rightarrow \alpha=\dfrac{\theta-\omega_it}{\dfrac{1}{2}t^2}\\\Rightarrow \alpha=\dfrac{170\times 2\pi-500\times \dfrac{2\pi}{60}\times 34}{\dfrac{1}{2}\times 34^2}\\\Rightarrow \alpha=-1.23\ \text{rad/s}^2[/tex]
[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \omega_f=500\times \dfrac{2\pi}{60}+(-1.23)\times 34\\\Rightarrow \omega_f=10.54\ \text{rad/s}[/tex]
The rate at which the wheel is spinning when the power comes back on is [tex]10.54\ \text{rad/s}[/tex].
A lead fishing weight of a mass of 0.20 kg is tied to a fishing line that is 0.50 m long. The weight is then whirled in a vertical circle. The finishing line will break if its tension exceeds 100.0 N.
Required:
a. If the weight is whirled at higher and higher speeds, at what point in the vertical circle will the string break (top, bottom, or random position)?
b. At what speed will the string break?
Answer:
The solution of the given question is summarized in the below section.
Explanation:
The given values are:
Tension,
T = 100 N
mass,
m = 0.2 kg
length,
l = 0.5 m
Now,
(a)
Somewhere at bottom, string or thread breaks since string voltage seems to be the strongest around this stage.
then,
⇒ [tex]T-mg=\frac{mv^2}{l}[/tex]
or,
⇒ [tex]T=mg+\frac{mv^2}{l}[/tex]
(b)
As we know,
⇒ [tex]\frac{mv^2}{l}=T-mg[/tex]
or,
⇒ [tex]v^2=\frac{(T-mg)l}{m}[/tex]
On substituting the values, we get
⇒ [tex]=\frac{(100-0.2\times 10)0.5}{0.2}[/tex]
⇒ [tex]=\frac{49}{0.2}[/tex]
⇒ [tex]v =\sqrt{245}[/tex]
⇒ [tex]=15.65 \ m/s[/tex]
A coil of 10 turns is in the shape of an ellipse having a major axis of 13.0 cm and a minor axis of 6.00 cm. The coil rotates at 73rpm in a region in which the Earth's magnetic field is 55.0 microT. What is the maximum voltage induced in the coil if the axis of rotation of the coil is along its major axis and this axis of rotation is aligned perpendicular to the Earth's magnetic field
Answer:
the maximum voltage induced in the coil is 2.574 × 10⁻⁵ V
Explanation:
Given the data in the question;
Number of turns N = 10
major axis Ma = 13 cm = 0.13 m
a = 0.13/2 = 0.065 m
Minor axis Mi = 6 cm = 0.06 m
b = 0.06/2 = 0.03 m
we know that; 1 RPM = 0.10472 rad/s
rate of rotation R = 73rpm = 7.64 rad/s
Magnetic field = 55 uT
we know that, Area of ellipse = π × a × b
we substitute
A = π × 0.065 m × 0.03 m
A = 0.006126 m²
so
Maximum Voltage = N × Area × Magnetic field × rate of reaction
we substitute
Maximum Voltage = 10 × 0.006126 × ( 55 × 10⁻⁶ ) × 7.64
Maximum Voltage = 2.574 × 10⁻⁵ V
Therefore, the maximum voltage induced in the coil is 2.574 × 10⁻⁵ V
A person, with his ear to the ground, sees a huge stone strike the concrete pavement. A moment later two sounds are heard from the impact: one travels in the air and the other in the concrete, and they are 6.4 s apart. Part A How far away did the impact occur? (Use vair=343m/s , vconcrete=3000m/s )
Answer:
The impact occured at a distance of 2478.585 meters from the person.
Explanation:
(After some research on web, we conclude that problem is not incomplete) The element "Part A" may lead to the false idea that question is incomplete. Correct form is presented below:
A person, with his ear to the ground, sees a huge stone strike the concrete pavement. A moment later two sounds are heard from the impact: one travels in the air and the other in the concrete, and they are 6.4 seconds apart. How far away did the impact occur? (Sound speed in the air: 343 meters per second, sound speed in concrete: 3000 meters per second)
Sound is a manifestation of mechanical waves, which needs a medium to propagate themselves. Depending on the material, sound will take more or less time to travel a given distance. From statement, we know this time difference between air and concrete ([tex]\Delta t[/tex]), in seconds:
[tex]\Delta t = t_{A}-t_{C}[/tex] (1)
Where:
[tex]t_{C}[/tex] - Time spent by the sound in concrete, in seconds.
[tex]t_{A}[/tex] - Time spent by the sound in the air, in seconds.
By suposing that sound travels the same distance and at constant speed in both materials, we have the following expression:
[tex]\Delta t = \frac{x}{v_{A}}-\frac{x}{v_{C}}[/tex]
[tex]\Delta t = x\cdot \left(\frac{1}{v_{A}}-\frac{1}{v_{C}} \right)[/tex]
[tex]x = \frac{\Delta t}{\frac{1}{v_{A}}-\frac{1}{v_{C}} }[/tex] (2)
Where:
[tex]v_{C}[/tex] - Speed of the sound in concrete, in meters per second.
[tex]v_{A}[/tex] - Speed of the sound in the air, in meters per second.
[tex]x[/tex] - Distance traveled by the sound, in meters.
If we know that [tex]\Delta t = 6.4\,s[/tex], [tex]v_{C} = 3000\,\frac{m}{s}[/tex] and [tex]v_{A} = 343\,\frac{m}{s}[/tex], then the distance travelled by the sound is:
[tex]x = \frac{\Delta t}{\frac{1}{v_{A}}-\frac{1}{v_{C}} }[/tex]
[tex]x = 2478.585\,m[/tex]
The impact occured at a distance of 2478.585 meters from the person.
I am b o r e d, I am very very b o r e d!
I'm b o r e d with Lazarbeam Quarantine edition
episode 2352 because apparently the quarantining never ends :(
A star with the same mass and diameter as the sun rotates about a central axis with a period of about 24.0 days. Suppose that the sun runs out of nuclear fuel and collapses to form a white dwarf star with a diameter equal to that of the earth. Assume the star acts like a solid sphere and that there is no loss of mass in the process. You will need some data from the inside front cover of you text. (a) What would be the new rotation period (s) of the star? (b) What is the ratio of final to initial kinetic energies (Kf /Ki)?
Answer:
a) w = 2.52 10⁷ rad / s, b) K / K₀ = 1.19 10⁴
Explanation:
a) We can solve this exercise using the conservation of angular momentum.
Initial instant. Before collapse
L₀ = I₀ w₀
Final moment. After the collapse
L_f = I w
angular momentum is conserved
L₀ = L_f
I₀ w₀ = I w (1)
The moment of inertia of a sphere is
I = 2/5 m r²
we take from the table the mass and diameter of the star
m = 1,991 10³⁰ kg
r₀ = 6.96 10⁸ m
r = 6.37 10⁶ m
to find the angular velocity let's use
w = L / T
where the length of a circle is
L = 2π r
T = 24 days (24 h / 1 day) (3600 s / 1h) = 2.0710⁶ s
we substitute
w = 2π r / T
wo = 2π 6.96 10⁸ / 2.07 10⁶
wo = 2.1126 10³ rad / s
we substitute in equation 1
w = [tex]\frac{I_o}{I}[/tex]
w = 2/5 mr₀² / 2/5 m r² w₀
w = ([tex]\frac{r_o}{r}[/tex]) ² wo
w = (6.96 10⁸ / 6.37 10⁶) ² 2.1126 10³
w = 2.52 10⁷ rad / s
b) the kinetic energy ratio
K = ½ m w²
K₀ = ½ m w₀²
K = ½ m w²
K / K₀ = (w / wo) ²
K / K₀ = 2.52 10⁷ / 2.1126 10³
K / K₀ = 1.19 10⁴
The half-life for a 400-gram sample of radioactive element X is 3 days. How much of element X remains after 15 days have passed?
A.
12.5 g
B.
25 g
C.
50 g
D.
100 g
The coefficient of linear expansion of lead is 29 x 10 K What change in temperature will cause a 5-m long lead bar to change in length by 3.0 mm?
Answer:
These linear thermal expansion coefficients are room temperature values of metals. Linear thermal expansion coefficient is defined as material's fractional change in length divided by the change in temperature.
Explanation:
The change in temperature caused is 0.0000207 K.
To calculate the change in temperature we use the formula of linear expansivity below.
⇒ Formula:
∝ = ΔL/(LΔT).................. Equation 1⇒ Where:
∝ = Coefficient of linear expansionΔL = Change in lengthL = Original lengthΔT = Change in Temperature.⇒ Make ΔT the subject of the equation
ΔT = ΔL/(∝L)................ Equation 2From the question,
⇒ Given:
∝ = 2.9×10 K⁻¹ΔL = 3 mm = 3×10⁻³ mL = 5 m⇒ Substitute these values into equation 2
ΔT = (3×10⁻³)/(29×5)ΔT = 0.003/145ΔT = 0.0000207 KHence, the change in temperature caused is 0.0000207 K
Learn more about linear expansivity: https://brainly.com/question/14325928
How many times a minute does a boat bob up and down on ocean waves that have a wavelength of 35.6 m and a propagation speed of 4.68 m/s? (the answer may not be a whole number)
Answer:
It will bob 7.887640449 times a minute
Explanation:
I hope this is correct!!
A 4 kg box is at rest on a table. The static friction coefficient u, between the box and table is 0.30, and
the kinetic friction coefficient Hi is 0.10. Then, a 10 N horizontal force is applied to the box.
Answer:
The box will not move from its position.
Explanation:
First, we will calculate the static frictional force that is stopping the box to move from its position:
[tex]f = \mu R = \mu W=\mu mg[/tex]
where,
f = static frictional force = ?
μ = coefficient of static friction = 0.3
m = mass of box = 4 kg
g = acceleration due to gravity = 9.81 m/s²
Therefore,
[tex]f = (0.3)(4\ kg)(9.81\ m/s^2)\\f=11.77\ N[/tex]
Since the frictional force (11.77 N) is greater than the applied force (10 N).
Therefore, the box will not move from its position.
A ray diagram is shown. A tree acts as the object further than 2 F away from a biconvex lens. The distance between 2 F and the object is labeled W. The distance between F and 2 F is labeled X. There I a light ray parallel to the principal axis is bent through F on the image side of the lens. There is a ray straight through the center of the lens. The rays intersect a point below the principle axis between F and 2 F on the image side of the lens and is closer to the principal axis than the object is tall. The intersect point is labeled Z and the distance between F and 2 F on the image side of the lens is labeled Y. Which letter represents the location of the image produced by the lens? W X Y Z
Answer:
Z
Explanation:
correct on edge
Answer: Z
good luck!
What happens is a series circuit when you increase the number of bulbs?
The bulbs will produce lesser light than their capacity, In short they will be dimmer because the the energy will get divided in the number of bulbs.
Which of the following best describes what occurs in a fission reaction?
A.
Two low mass nuclei are joined to form one nucleus.
B.
Electrons are shared between the nuclei.
C.
A single nucleus divides into two or more nuclei and gives off energy.
D.
A chemical reaction occurs between the nuclei.
Answer:
C.A single nucleus divides into two or more nuclei and gives off energy best describes what occurs in a fission reaction.
Answer:
C.
A single nucleus divides into two or more nuclei and gives off energy.
hope it is helpful to you
a boat carving people more than its capacity is at risk of sinking, why?
Answer:
Explained below.
Explanation:
For a boat or any object to float on water, it's density must be less than that of water.
Now, when the maximum capacity of people to be carried by the boat is exceeded, it's possible that the maximum mass of people will also be exceeded depending on the mass of the people in the boat.
Now, we know that; density = mass/volume.
Thus, the higher the mass of the people, the higher the density and the higher the density, the more likely it is to be above that of water and the more likely it is to sink.