1. A base-ball of mass 0.3kg approaches the bat at a speed of 30 miles/hour and when the ball hits the bat for 0.5 s, it started to move away from the bat at a speed of 60 miles/hour. Find the impulse

Answers

Answer 1

Answer:

I = 27kg.mi/h

Explanation:

In order to calculate the impulse of the ball, you use the following formula:

[tex]I=m\Delta v[/tex]  [tex]=m(v-v_o)[/tex]      (1)

m: mass of the ball = 0.3kg

v: speed of the ball after the bat hit it = 60mi/h

vo: speed of the ball before the bat hit it = 30mi/h

You replace the values of all parameters in the equation (1):

[tex]I=(0.3kg)(60mi/h-(-30mi/h))=27kg\frac{mi}{h}[/tex]

where the minus sign of the initial velocity means that the motion of the ball is opposite to the final direction of such a motion.

The imulpse of the ball is 27 kg.miles/hour


Related Questions

Can an object travel at the speed of
light? Why or why nbt?

Answers

Answer:

no the only things that can travel at the speed of light are waves in the electromagnetic spectrum

No because, the object shrinks as it moves forward compared to light, it never does.

Source: google

An amusement park ride has a vertical cylinder with an inner radius of 3.4 m, which rotates about its vertical axis. Riders stand inside against the carpeted surface and rotate with the cylinder while it accelerates to its full angular velocity. At that point the floor drops away and friction between the riders and the cylinder prevents them from sliding downward. The coefficient of static friction between the riders and the cylinder is 0.87. What minimum angular velocity in radians/second is necessary to assure that the riders will not slide down the wall?

Answers

Answer:

The minimum angular velocity necessary to assure that the riders will not slide down the wall is 1.58 rad/second.

Explanation:

The riders will experience a centripetal force from the cylinder

[tex]F_{C}[/tex] = mrω^2    .... equ 1

where

m is the mass of the rider

r is the inner radius of the cylinder = 3.4 m

ω is the angular speed of of the rider

For the riders not to slide downwards, this centripetal force is balanced by the friction between the riders and the cylinder. The frictional force is given as

[tex]F_{f}[/tex] = μR       ....equ 2

where

μ = coefficient of friction = 0.87

R is the normal force from the rider = mg

where

m is the rider's mass

g is the acceleration due to gravity = 9.81 m/s

substitute mg for R in equ 2, we'll have

[tex]F_{f}[/tex] = μmg     ....equ 3

Equating centripetal force of equ 1 and frictional force of equ 3, we'll get

mrω^2 = μmg

the mass of the rider cancels out, and we are left with

rω^2 = μg

ω^2 = μg/r

ω = [tex]\sqrt{\frac{ug}{r} }[/tex]

ω = [tex]\sqrt{\frac{0.87*9.81}{3.4} }[/tex]

ω = 1.58 rad/second

The minimum angular velocity necessary so that the riders will not slide down the wall is 1.58 rad/s

The riders will experience a  centripetal force from the cylinder

[tex]F = mrw^2[/tex]

where  m is the mass of the rider

r is the inner radius of the cylinder = 3.4 m

ω is the angular speed of the rider

For the riders not to slide downwards, this centripetal force must be balanced by friction. The frictional force is given as

f = μN

where

μ = coefficient of friction = 0.87

N is the normal force = mg

f = μmg  

Equating centripetal force of and frictional force of we'll get

[tex]mrw^2 = umg[/tex]

[tex]rw^2 = ug[/tex]

[tex]w^2 = ug/r[/tex]

[tex]w= \sqrt{ug/r}[/tex]

[tex]w= \sqrt{0.87*9.8/3.4}[/tex]  

ω = 1.58 rad/s is the minimum angular velocity needed to prevent the rider from sliding.

Learn more:

https://brainly.com/question/24638181

The electric field at the surface of a charged, solid, copper sphere with radius 0.220 mm is 4200 N/CN/C, directed toward the center of the sphere. What is the potential at the center of the sphere, if we take the potential to be zero infinitely far from the sphere?

Answers

Answer:

The potential at the center of the sphere is -924 V

Explanation:

Given;

radius of the sphere, R = 0.22 m

electric field at the surface of the sphere, E = 4200 N/C

Since the electric field is directed towards the center of the sphere, the charge is negative.

The Potential is the same at every point in the sphere, and it is given as;

[tex]V = \frac{1}{4 \pi \epsilon_o} \frac{q}{R}[/tex] -------equation (1)

The electric field on the sphere is also given as;

[tex]E = \frac{1}{4 \pi \epsilon _o} \frac{|q|}{R^2}[/tex]

[tex]|q |= 4 \pi \epsilon _o} R^2E[/tex]

Substitute in the value of q in equation (1)

[tex]V = \frac{1}{4 \pi \epsilon_o} \frac{-(4 \pi \epsilon _o R^2E)}{R} \ \ \ \ q \ is \ negative\ because \ E \ is\ directed \ toward \ the \ center\\\\V = -RE\\\\V = -(0.22* 4200)\\\\V = -924 \ V[/tex]

Therefore, the potential at the center of the sphere is -924 V

Alternating Current In Europe, the voltage of the alternating current coming through an electrical outlet can be modeled by the function V 230 sin (100t), where tis measured in seconds and Vin volts.What is the frequency of the voltage

Answers

Answer:

[tex]\frac{50}{\pi }[/tex]Hz

Explanation:

In alternating current (AC) circuits, voltage (V) oscillates in a sine wave pattern and has a general equation as a function of time (t) as follows;

V(t) = V sin (ωt + Ф)            -----------------(i)

Where;

V = amplitude value of the voltage

ω = angular frequency = 2 π f        [f = cyclic frequency or simply, frequency]

Ф = phase difference between voltage and current.

Now,

From the question,

V(t) = 230 sin (100t)              ---------------(ii)

By comparing equations (i) and (ii) the following holds;

V = 230

ω = 100

Ф = 0

But;

ω = 2 π f = 100

2 π f = 100             [divide both sides by 2]

π f = 50

f = [tex]\frac{50}{\pi }[/tex]Hz

Therefore, the frequency of the voltage is [tex]\frac{50}{\pi }[/tex]Hz

A tightly wound toroid of inner radius 1.2 cm and outer radius 2.4 cm has 960 turns of wire and carries a current of 2.5 A.

Requried:
a. What is the magnetic field at a distance of 0.9 cm from the center?
b. What is the field 1.2 cm from the center?

Answers

Answer:

a

  [tex]B = 0.0533 \ T[/tex]

b

  [tex]B = 0.04 \ T[/tex]

Explanation:

From the question we are told that

   The inner radius is [tex]r = 1.2 \ cm = 0.012 \ m[/tex]

   The  outer radius is  [tex]r_o = 2.4 \ cm = \frac{2.4}{100} = 0.024 \ m[/tex]

    The nu umber of turns is  [tex]N = 960[/tex]

    The current it is carrying is  [tex]I = 2. 5 A[/tex]

Generally the magnetic field is mathematically represented as

      [tex]B = \frac{\mu_o * N* I }{2 * \pi * r }[/tex]

Where  [tex]\mu_o[/tex] is the permeability of free space with a constant value    

            [tex]\mu = 4\pi * 10^{-7} N/A^2[/tex]

And the given distance where the magnetic field is felt is  r =  0.9 cm  =  0.009 m

Now  substituting values

     [tex]B = \frac{ 4\pi * 10^{-7} * 960* 2.5 }{2 * 3.142 * 0.009 }[/tex]

    [tex]B = 0.0533 \ T[/tex]

    Fro the second question the distance of the position considered from the center is  r =  1.2 cm  =  0.012 m

So the  magnetic field is  

        [tex]B = \frac{ 4\pi * 10^{-7} * 960* 2.5 }{2 * 3.142 * 0.012 }[/tex]

        [tex]B = 0.04 \ T[/tex]

The magnetic field at a distance of 0.9 cm from the center of the toroid is 0.053 T.

The magnetic field at a distance of 1.2 cm from the center of the toroid is 0.04 T.

The given parameters;

radius of the toroid, r = 1.2 cm = 0.012 mouter radius of the toroid, R = 2.4 cm = 0.024 mnumber of turns, N = 960 turnscurrent in wire, I = 2.5 A

The magnetic field at a distance of 0.9 cm from the center of the toroid is calculated as follows;

[tex]B = \frac{\mu_o NI}{2\pi r} \\\\B = \frac{(4\pi \times 10^{-7})\times (960) \times (2.5)}{2\pi \times 0.009} \\\\B = 0.053 \ T[/tex]

The magnetic field at a distance of 1.2 cm from the center of the toroid is calculated as follows;

[tex]B = \frac{\mu_o NI}{2\pi r} \\\\B = \frac{(4\pi \times 10^{-7})\times (960) \times (2.5)}{2\pi \times 0.012} \\\\B = 0.04 \ T[/tex]

Learn more here:https://brainly.com/question/19564329

The compressor of an air conditioner draws an electric current of 16.2 A when it starts up. If the start-up time is 1.45 s long, then how much electric charge passes through the circuit during this period

Answers

Answer:

Q = 23.49 C

Explanation:

We have,

Electric current drawn by the air conditioner is 16.2 A

Time, t = 1.45 s

It is required to find the electric charge passes through the circuit during this period. We know that electric current is defined as the electric charge flowing per unit time. So,

[tex]I=\dfrac{q}{t}\\\\q=It\\\\q=16.2\times 1.45\\\\q=23.49\ C[/tex]

So, the charge of 23.49 C is passing through the circuit during this period.

A crane lifts a 425 kg steel beam vertically a distance of 64 m. How much work does the crane do on the beam if the beam accelerates upward at 1.8 m/s2

Answers

Answer:

work done= 48.96 kJ

Explanation:

Given data

mass of  load m= 425 kg

height/distance h=64 m

acceleration a= 1.8 m/s^2

The work done can be calculated using the expression

work done= force* distance

but force= mass *acceleration

hence work done= 425*1.8*64= 48,960 J

work done= 48.96 kJ

A guitar string 0.65 m long has a tension of 61 N and a mass per unit length of 3.0 g/m. (i) What is the speed of waves on the string when it is plucked? (ii) What is the string's fundamental frequency of vibration when plucked? (iii) At what other frequencies will this string vibrate?

Answers

Answer:

i

  [tex]v = 142.595 \ m/s[/tex]

ii

  [tex]f = 109.69 \ Hz[/tex]

iii1 )

  [tex]f_2 =219.4 Hz[/tex]

iii2)

   [tex]f_3 =329.1 Hz[/tex]

iii3)

    [tex]f_4 =438.8 Hz[/tex]

Explanation:

From the question we are told that

    The length of the string is  [tex]l = 0.65 \ m[/tex]

     The tension on the string is  [tex]T = 61 \ N[/tex]

     The mass per unit length is  [tex]m = 3.0 \ g/m = 3.0 * \frac{1}{1000} = 3 *10^{-3 } \ kg /m[/tex]

     

The speed of wave on the string is mathematically represented as

       [tex]v = \sqrt{\frac{T}{m} }[/tex]

substituting values

      [tex]v = \sqrt{\frac{61}{3*10^{-3}} }[/tex]

     [tex]v = 142.595 \ m/s[/tex]

generally the  string's  frequency is mathematically represented as

         [tex]f = \frac{nv}{2l}[/tex]

n = 1  given that the frequency we are to find is the fundamental frequency

So

      substituting values

       [tex]f = \frac{142.595 * 1 }{2 * 0.65}[/tex]

       [tex]f = 109.69 \ Hz[/tex]

The  frequencies at which the string would vibrate include

1       [tex]f_2 = 2 * f[/tex]

Here [tex]f_2[/tex] is  know as the second harmonic and the value is  

      [tex]f_2 = 2 * 109.69[/tex]

      [tex]f_2 =219.4 Hz[/tex]

2

[tex]f_3 = 3 * f[/tex]

Here [tex]f_3[/tex] is  know as the third harmonic and the value is  

      [tex]f_3 = 3 * 109.69[/tex]

     [tex]f_3 =329.1 Hz[/tex]

3

     [tex]f_3 = 4 * f[/tex]

Here [tex]f_4[/tex] is  know as the fourth harmonic and the value is  

      [tex]f_3 = 4 * 109.69[/tex]

     [tex]f_4 =438.8 Hz[/tex]

Calculate the ideal banking angle in degrees for a gentle turn of 1.88 km radius on a highway with a 136.3 km/hr speed limit, assuming everyone travels at the speed limit.

Answers

Answer:

Ф = 4.4°

Explanation:

given:

radius (r) = 1.88 km

velocity (v) = 136.3 km/hr

required:

banking angle ∡ ?

first:

convert 1.88 km to m = 1.88km * 1000m / 1km

r = 1880 m

convert velocity v = 136.3 km/hr to m/s = 136.3 km/hr * (1000 m/ 3600s)

v = 37.86 m/s

now.. calculate the angle

Ф = inv tan (v² / r * g)            we know that gravity = 9.8 m/s²

Ф = inv tan (37.86² / (1880 * 9.8))

Ф = 4.4°

What is the change in internal energy of an engine if you put 15 gallon of gasoline into its tank? The energy content of gasoline is 1.5 x 106 J/gallon. All other factors, such as the engine’s temperature, are constant. How many hours the engine can work if the power of the engine’s motor is 600 W? (8 marks)

Answers

Answer:

ΔU = 2.25 x 10⁸ J

t = 104.17 s

Explanation:

The change in internal energy of the engine can be given by the following formula:

ΔU = (Mass of Gasoline)(Energy Content of Gasoline)

ΔU = (1.5 x 10⁶ J/gallon)(15 gallon)

ΔU = 2.25 x 10⁸ J

Now, for the time of operation, we use the following formula of power.

P = W/t = ΔU/t

t = ΔU/P

where,

t = time of operation = ?

ΔU = Change in internal energy = 2.25 x 10⁸ J

P = Power of motor = 600 W

Therefore,

t = (2.25 x 10⁸ J)/(600 W)

t = (375000 s)(1 h/3600 s)

t = 104.17 s

A man stands on a merry-go-round that is rotating at 2.5 rad/s. If the coefficient of static friction between the man’s shoes and the merry-go-round is µs = 0.5, how far from the axis of rotation can he stand without sliding?

Answers

Answer:

0.8 m

Explanation:

Draw a free body diagram.  There are three forces:

Weight force mg pulling down,

Normal force N pushing up,

and friction force Nμ pushing towards the center.

Sum of forces in the y direction:

∑F = ma

N − mg = 0

N = mg

Sum of forces in the centripetal direction:

∑F = ma

Nμ = m v²/r

Substitute and simplify:

mgμ = m v²/r

gμ = v²/r

Write v in terms of ω and solve for r:

gμ = ω²r

r = gμ/ω²

Plug in values:

r = (10 m/s²) (0.5) / (2.5 rad/s)²

r = 0.8 m

The distance (radius) from the axis of rotation which the man can stand without sliding is 0.784 meters.

Given the following data:

Angular speed = 2.5 rad/s.Coefficient of static friction = 0.5

To determine how far (radius) from the axis of rotation can the man stand without sliding:

We would apply Newton's Second Law of Motion, to express the centripetal and force of static friction acting on the man.

[tex]\sum F = \frac{mv^2}{r} - uF_n\\\\\frac{mv^2}{r} = uF_n[/tex]....equation 1.

But, Normal force, [tex]F_n = mg[/tex]  

Substituting the normal force into eqn. 1, we have:

[tex]\frac{mv^2}{r} = umg\\\\\frac{v^2}{r} = ug[/tex]....equation 2.

Also, Linear speed, [tex]v = r\omega[/tex]

Substituting Linear speed into eqn. 2, we have:

[tex]\frac{(r\omega )^2}{r} = ug\\\\r\omega ^2 = ug\\\\r = \frac{ug}{\omega ^2}[/tex]

Substituting the given parameters into the formula, we have;

[tex]r = \frac{0.5 \times 9.8}{2.5^2} \\\\r = \frac{4.9}{6.25}[/tex]

Radius, r = 0.784 meters

Read more: https://brainly.com/question/13754413

If an object is determined to have a negative charge of 1.6 micro Coulomb, you can conclude that the object has an excess of

Answers

Answer:

The object has an excess of [tex]10^{13}[/tex] electrons.

Explanation:

When an object has a negative charge he has an excess of electrons in its body. We can calculate the number of excessive electrons by dividing the charge of the body by the charge of one electron. This is done below:

[tex]n = \frac{\text{object charge}}{\text{electron charge}}\\n = \frac{-1.6*10^{-6}}{-1.6*10^{-19}} = 1*10^{-6 + 19} = 10^{13}[/tex]

The object has an excess of [tex]10^{13}[/tex] electrons.

The voltage difference between the AA and AAA batteries should be quite small. What then might be the difference between them?

Answers

Answer:

The major difference is the capacity of both batteries. The AA battery has a higher capacity (a higher current) than the AAA battery.

Explanation:

The AA batteries and the AAA batteries are very similar in their voltage; both of them have 1.5 V.

The difference between these two batteries is their size and also the current that they have. The AAA battery is smaller than the AA battery, which means that the amount of electrochemical material is lower, so the AA battery has a higher capacity (a higher current) than the AAA battery. Generally, AA battery has 2400 mAh capacity and AAA battery has a capacity of 1000mAh; this means that AA battery has almost three times the capacity of an AAA battery.      

Furthermore, the size of the AA battery makes it more common than the AAA battery and therefore has higher commercial demand.                                  

I hope it helps you!

A length of organ pipe is closed at one end. If the speed of sound is 344 m/s, what length of pipe (in cm) is needed to obtain a fundamental frequency of 50 Hz

Answers

Answer:

The length = 27.52m

Explanation:

v=f x wavelength

a point charge q is located at the center of a cube with edge length d. whatis the value of the flux over one face of the cube

Answers

Answer:

q/6Eo

Explanation:

See attached file pls

An elastic band is hung on a hook and a mass is hung on the lower end of the band. When the mass is pulled downward and then released, it vibrates vertically. The equation of motion is s = 9 cos(t) + 9 sin(t), t ≥ 0, where s is measured in centimeters and t in seconds. (Take the positive direction to be downward.) (a) Find the velocity and acceleration at time t.

Answers

Answer:

v(t) = s′(t) = −9sin(t)+9cos(t)

a(t) = v′(t) = −9cos(t) −9sin(t)

Explanation:

Given that

s = 9 cos(t) + 9 sin(t), t ≥ 0

Then acceleration and velocity is

v(t) = s′(t) = −9sin(t)+9cos(t)

a(t) = v′(t) = −9cos(t) −9sin(t)

Consider a skateboarder who starts from rest at the top of ramp that is inclined at an angle of 18.0 ∘ to the horizontal.
Assuming that the skateboarder's acceleration is gsin 18.0 ∘, find his speed when he reaches the bottom of the ramp in 3.50 s .

Answers

Answer:

Explanation:

v= u + at

v is final velocity , u is initial velocity . a is acceleration and t is time

Initial velocity u = 0 . Putting the given values in the equation

v = 0 + g sin 18 x 3.5

= 10.6 m /s

For a skateboarder who starts from the rest, the speed when he reaches the bottom of the ramp will be 10.6 m/s.

What are Velocity and Acceleration?

The term "velocity" refers to a vector measurement of the rate and direction of motion. Velocity is the rate of movement in a single direction, to put it simply. Velocity can be used to determine how fast a rocket is heading into space and how fast a car is moving north on a congested motorway.

There are several types of velocity :

Instantaneous velocityAverage VelocityUniform VelocityNon-Uniform Velocity

The pace at which a person's velocity changes is known as acceleration. This implies that an object is accelerating if its velocity is rising or falling. An object that is accelerating won't have a steady change in location every second like an item moving at a constant speed does.

According to the question, the given values are :

Time, t = 3.50 sec

Initial Velocity, u = 0 m/s

Use equation of motion :

v = u+at

v = 0+ g sin 18 × 3.5

v = 10.6 m/s.

So, the final velocity will be 10.6 m/s.

To get more information about Velocity and Acceleration :

https://brainly.com/question/14683118

#SPJ2

symbol of science hhshsjsiwtwwisjzhJava​

Answers

Answer:

is this a company name.? java is a computer software right..

Consider a sound wave modeled with the equation s(x, t) = 3.00 nm cos(3.50 m−1x − 1,800 s−1t). What is the maximum displacement (in nm), the wavelength (in m), the frequency (in Hz), and the speed (in m/s) of the sound wave?

Answers

Answer:

-   maximum displacement = 3.00nm

-   λ = 1.79m

-  f = 286.47 s^-1

Explanation:

You have the following equation for a sound wave:

[tex]s(x,t)=3.00nm\ cos(3.50m^{-1}x- 1,800s^{-1} t)[/tex]              (1)

The general form of the equation of a sound wave can be expressed as the following formula:

[tex]s(x,t)=Acos(kx-\omega t)[/tex]            (2)

A: amplitude of the wave = 3.00nm

k: wave number = 3.50m^-1

w: angular frequency = 1,800s^-1

- The maximum displacement of the wave is given by the amplitude of the wave, then you have:

maximum displacement = A = 3.00nm

- The wavelength is given by :

[tex]\lambda=\frac{2\pi}{k}=\frac{2\pi}{3.50m^{-1}}=1.79m[/tex]

The values for the wavelength is 1.79m

- The frequency is:

[tex]f=\frac{\omega}{2\pi}=\frac{1,800s^{-1}}{2\pi}=286.47s^{-1}[/tex]

The frequency is 286.47s-1

A medieval city has the shape of a square and is protected by walls with length 500 m and height 15 m. You are the commander of an attacking army and the closest you can get to the wall is 100 m. Your plan is to set fire to the city by catapulting heated rocks over the wall (with an initial speed of 80 m/s). At what range of angles should you tell your men to set the catapult? (Assume the path of the rocks is perpendicular to the wall. Round your answers to one decimal place. Use g ≈ 9.8 m/s2. Enter your answer using interval notation. Enter your answer in terms of degrees without using a degree symbol.)

Answers

Answer:

  θ₁ = 85.5º       θ₂ = 12.98º

Explanation:

Let's analyze this projectile launch problem, the catapults are 100 m from the wall 15 m high, the objective is for the walls, let's look for the angles for which the rock stops touching the wall.

Let's write the equations for motion for this point

X axis

          x = v₀ₓ t

          x = v₀ cos θ t

Y axis

         y = [tex]v_{oy}[/tex] t - ½ g t2

         y = v_{o} sin θ t - ½ g t²

let's substitute the values

         100 = 80 cos θ t

           15 = 80 sin θ t - ½ 9.8 t²

we have two equations with two unknowns, so the system can be solved

let's clear the time in the first equation

           t = 100/80 cos θ

         15 = 80 sin θ (10/8 cos θ) - 4.9 (10/8 cos θ)²

         15 = 100  tan θ - 7.656 sec² θ

we can use the trigonometric relationship

         sec² θ = 1- tan² θ

we substitute

       15 = 100 tan θ - 7,656 (1- tan² θ)

       15 = 100 tan θ - 7,656 + 7,656 tan² θ

        7,656 tan² θ + 100 tan θ -22,656=0

let's change variables

       tan θ = u

         

        u² + 13.06 u + 2,959 = 0

let's solve the quadratic equation

       u = [-13.06 ±√(13.06² - 4  2,959)] / 2

       u = [13.06 ± 12.599] / 2

        u₁ = 12.8295

        u₂ = 0.2305

now we can find the angles

         u = tan θ

         θ = tan⁻¹ u

        θ₁ = 85.5º

         θ₂ = 12.98º

6. Two forces of 50 N and 30 N, respectively, are acting on an object. Find the net force (in
N) on the object if
the forces are acting in the same direction
b. the forces are acting in opposite directions.​

Answers

Answer:

same direction = 80 (n)

opposite direction = 20 (n) going one direction

Explanation:

same direction means they are added to each other

and opposite means acting on eachother

Consider a conducting rod of length 31 cm moving along a pair of rails, and a magnetic field pointing perpendicular to the plane of the rails. At what speed (in m /s) must the sliding rod move to produce an emf of 0.75 V in a 1.75 T field?

Answers

Answer:

The speed of the rod is 1.383 m/s

Explanation:

Given;

length of the conducting rod, L = 31 cm = 0.31 m

induced emf on the rod, emf = 0.75V

magnetic field around the rod, B = 1.75 T

Apply the following Faraday's equation for electromagnetic induction in a moving rod to determine the speed of the rod.

emef = BLv

where;

B is the magnetic field

L is length of the rod

v is the speed of the rod

v = emf / BL

v = (0.75) / (1.75 x 0.31)

v = 1.383 m/s

Therefore, the speed of the rod is 1.383 m/s

A positive kaon (K+) has a rest mass of 494 MeV/c² , whereas a proton has a rest mass of 938 MeV/c². If a kaon has a total energy that is equal to the proton rest energy, the speed of the kaon is most nearly:___________.
A. 0.25c
B. 0.40c
C. 0.55c
D. 0.70c
E. 0.85c

Answers

Answer:

0.85c

Explanation:

Rest mass of Kaon [tex]M_{0K}[/tex] = 494 MeV/c²

Rest mass of proton [tex]M_{0P}[/tex]  = 938 MeV/c²

The rest energy is gotten by multiplying the rest mass by the square of the speed of light c²

for the kaon, rest energy [tex]E_{0K}[/tex] = 494c² MeV

for the proton, rest energy [tex]E_{0P}[/tex] = 938c² MeV

Recall that the rest energy, and the total energy are related by..

[tex]E[/tex] = γ[tex]E_{0}[/tex]

which can be written in this case as

[tex]E_{K}[/tex] = γ[tex]E_{0K}[/tex] ...... equ 1

where [tex]E[/tex] = total energy of the kaon, and

[tex]E_{0}[/tex] = rest energy of the kaon

γ = relativistic factor = [tex]\frac{1}{\sqrt{1 - \beta ^{2} } }[/tex]

where [tex]\beta = \frac{v}{c}[/tex]

But, it is stated that the total energy of the kaon is equal to the rest mass of the proton or its equivalent rest energy, therefore...

[tex]E_{K}[/tex] = [tex]E_{0P}[/tex] ......equ 2

where [tex]E_{K}[/tex] is the total energy of the kaon, and

[tex]E_{0P}[/tex] is the rest energy of the proton.

From [tex]E_{K}[/tex] = [tex]E_{0P}[/tex] = 938c²    

equ 1 becomes

938c² = γ494c²

γ = 938c²/494c² = 1.89

γ = [tex]\frac{1}{\sqrt{1 - \beta ^{2} } }[/tex] = 1.89

1.89[tex]\sqrt{1 - \beta ^{2} }[/tex] = 1

squaring both sides, we get

3.57( 1 - [tex]\beta^{2}[/tex]) = 1

3.57 - 3.57[tex]\beta^{2}[/tex] = 1

2.57 = 3.57[tex]\beta^{2}[/tex]

[tex]\beta^{2}[/tex] = 2.57/3.57 = 0.72

[tex]\beta = \sqrt{0.72}[/tex] = 0.85

but, [tex]\beta = \frac{v}{c}[/tex]

v/c = 0.85

v = 0.85c

You have a circuit of three resistors in series connected to a battery. You add a fourth resistor, also in series, to the combination. As a result:_______.
A. Power delivered from the battery to combination increases.
B. It is impossible to give the answer without knowing the actual resistances and voltage of the battery.
C. Power delivered from the battery to combination is unchanged.
D. Power delivered from the battery to combination decreases.

Answers

Answer:

D

Explanation:

The power equation is P= V^2/R

Please let me know if this helped! Please rate it the brainlist if possible!

As a result of the given scenario, power delivered from the battery to combination decreases. The correct option is D.

What is a resistors?

A resistor is a two-terminal passive electrical component that uses electrical resistance as a circuit element.

Resistors are used in electronic circuits to reduce current flow, adjust signal levels, divide voltages, and bias active elements.

A resistor is a component of an electronic circuit that limits or regulates the flow of electrical current. Resistors can also be used to supply a fixed voltage to an active device such as a transistor.

The current through resistors is the same when they are connected in series. The battery voltage is divided among resistors.

Adding more resistors to a series circuit increases total resistance and thus lowers current. However, in a parallel circuit, adding more resistors in parallel creates more options while decreasing total resistance.

Thus, the correct option is D.

For more details regarding resistors, visit:

https://brainly.com/question/24297401

#SPJ5

A particle is released as part of an experiment. Its speed t seconds after release is given by v (t )equalsnegative 0.4 t squared plus 2 t​, where v (t )is in meters per second. ​a) How far does the particle travel during the first 2 ​sec? ​b) How far does it travel during the second 2 ​sec?

Answers

Answer:

a) 2.933 m

b) 4.534 m

Explanation:

We're given the equation

v(t) = -0.4t² + 2t

If we're to find the distance, then we'd have to integrate the velocity, since integration of velocity gives distance, just as differentiation of distance gives velocity.

See attachment for the calculations

The conclusion of the attachment will be

7.467 - 2.933 and that is 4.534 m

Thus, The distance it travels in the second 2 sec is 4.534 m

A friend throws a heavy ball toward you while you are standing on smooth ice. You can either catch the ball or deflect it back toward your friend. What should you do in order to maximize your speed right after your interaction with the ball?
A. You should catch the ball.
B. You should let the ball go past you without touching it.
C. You should deflect the ball back toward your friend.
D. More information is required to determine how to maximize your speed.
E. It doesn't matter. Your speed is the same regardless of what you do.

Answers

Answer:

C You should deflect the ball back toward your friend.

Explanation:

This is because it would result in a completely inelastic collision, and the final velocity of me would be found using,

with m= mass, V=velocity, i=initial, f=final:

mV(me,i) +mV(ball,i) = [m(me)+m(b)]V(f)

So V(f) would be just the momentum of the ball divided by just MV mass of the ball and it will be higher resulting in inelastic collision

Answer:

A. You should catch the ball.

Explanation:

Catching the ball maximizes your speed by converting most of the momentum of the flying ball into the momentum of you and the ball. Since the ice is smooth, the friction between your feet and the ice is almost negligible, meaning less energy is needed to set your body in motion. Catching the ball means that you and the ball undergoes an inelastic collision, and part of the kinetic energy of the ball is transferred to you, setting you in motion. Deflecting the ball will only give you a relatively small speed compared to catching the ball.

Given that the velocity of blood pumping through the aorta is about 30 cm/s, what is the total current of the blood passing through the aorta (in grams of blood per second)?

Answers

Answer:

94.248 g/sec

Explanation:

For solving the total current of the blood passing first we have to solve the cross sectional area which is given below:

[tex]A_1 = \pi R^2\\\\A_1 = \pi (1)^2\\\\A_1 = 3.1416 cm^2[/tex]

And, the velocity of blood pumping is 30 cm^2

Now apply the following formula to solve the total current

[tex]Q = \rho A_1V_1\\\\Q = (1)(3.1416)(30)\\\\[/tex]

Q =  94.248 g/sec

Basically we applied the above formula So, that the total current could come

find the value of k for which the given pair of vectors are not equal
2ki +3j​ and 8i + 4kj

Answers

Answer:

5

Explanation:

An electron, moving west, enters a magnetic field of a certain strength. Because of this field the electron curves upward. What is the direction of the magnetic field?

Answers

Answer:

Towards the west.

Explanation:

The direction of a magnetic field lines is the direction north end of a compass needle points. The magnetic field exert force on positive charge.

Using the magnetic rule,which indicate that in order to find the direction of magnetic force on a moving charge, the thumb of the right hand point in the direction of force, the index finger in the direction of velocity charge and the middle finger in the direction of magnetic field.

According to the right hand rule, the electron moving moving west which is the thumb, the direction of the electron is west which is the middle finger and it is upward

supose at 20 degree celsius the resistance of Tungsten thermometer is 154.9. WHen placed in a particular solution , the resistance is 207.4 What is the temerature (in degree Celsius of this solution

Answers

Answer:

T₂ = 95.56°C

Explanation:

The final resistance of a material after being heated is given by the relation:

R' = R(1 + αΔT)

where,

R' = Final Resistance = 207.4 Ω

R = Initial Resistance = 154.9 Ω

α = Temperature Coefficient of Resistance of Tungsten = 0.0045 °C⁻¹

ΔT = Change in Temperature = ?

Therefore,

207.4 Ω = 154.9 Ω[1 + (0.0045°C⁻¹)ΔT]

207.4 Ω/154.9 Ω = 1 + (0.0045°C⁻¹)ΔT

1.34 - 1 = (0.0045°C⁻¹)ΔT

ΔT = 0.34/0.0045°C⁻¹

ΔT = 75.56°C

but,

ΔT = Final Temperature - Initial Temperature

ΔT = T₂ - T₁ = T₂ - 20°C

T₂ - 20°C = 75.56°C

T₂ = 75.56°C + 20°C

T₂ = 95.56°C

Other Questions
Which living condition do you think you would have the hardest time with? being treated as unequal by others having to leave my family needing to work hard all the time traveling to an unfamiliar country Brainliest for the correct answer!! Choose the best definition of an active verb.A.With an active verb, the subject receives the action.B.Active verbs are those used for sports writing.C.With an active verb, the subject performs the action.D.Active verbs indicate reaction. please asap thanks :D The vertex of this parabola is at (2, -4). When the y-value is -1, the x-value is 3. What is the coefficient of the squared term in the parabola's equation? Select True/False for each of the following statements regarding aluminum / aluminum alloys: (a) Aluminum alloys are generally not viable as lightweight structural materials in humid environments because they are highly susceptible to corrosion by water vapor. (b) Aluminum alloys are generally superior to pure aluminum, in terms of yield strength, because their microstructures often contain precipitate phases that strain the lattice, thereby hardening the alloy relative to pure aluminum. (c) Aluminum is not very workable at high temperatures in air, in terms of extrusion and rolling, because a non-protective oxide grows and consumes the metal, converting it to a hard and brittle ceramic. (d) Compared to most other metals, like steel, pure aluminum is very resistant to creep deformation. (e) The relatively low melting point of aluminum is often considered a significant limitation for high-temperature structural applications. Need ASAPOne of the leaders of the Reformation, John Calvin, was particularly influenced by the Renaissance philosophy of humanism. Why were so many Europeans willing to accept this new way of looking at life during 15th and 16th centuries? A) The Catholic Church decided to place more emphasis on the rights and authority of the individual, rather than Church authorities.B) After the Black Death, which killed so many people in Europe, each individual human life was seen as more precious than ever before.C) The philosophy of humanism suggested a way of life that allowed humans to do whatever they wanted, regardless of the consequences.D) Humanism was seen as a way to escape poverty since each person could focus on finding money and resources for himself. Hunter is 9 years older than 3 times the age of his nephew. Hunter is 33 years old. How old is his nephew? Consider the following SQL code to generate a table for storing data about a music library. CREATE TABLE playlists ( id INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT ); CREATE TABLE songs ( id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT, artist TEXT, album TEXT, year NUMERIC, playlist_id INTEGER, FOREIGN KEY(playlist_id) REFERENCES playlists(id) ); Critique the design of this database, as by proposing and explaining at least two ways in which its design could be improved. Hint: Might songs end up with (lots of!) duplicate values in some columns? Given that y is directly proportional tox, and when y = 8 when x=10.(a) Write down the equation of y in terms of x.(b) Find the value of y when x = 25.8(c) Find the value of x when y==25 A cellular phone company monitors monthly phone usage. The following data represent the monthly phone use in minutes of one particularcustomer for the past 20 months. Use the given data to answer parts (a) and (b).325 517 424 395 494396 351 379 408 426523 421 434 373 456535 394 437 403 513(a) Determine the standard deviation and interquartile range of the data.s=(Round to two decimal places as needed.) Find the area of this triangle.. Mi nombre es Estela. Yo tengo que poner y quitar la mesa y lavar los platos cada da con mi mam. Mi pap no tiene que poner ni quitar la mesa ni lavar los platos. Tengo que barrer y fregar el piso con mi mam cada each semana. Mi amigo Pepe no tiene que barrer ni fregar el piso. Ana, tienes que limpiar cada da? S, tengo que pasar la aspiradora el martes y lavar los platos los lunes, mircoles y viernes. Mi hermano, brother no tiene que pasar la aspiradora el martes ni lavar los platos. Based on what you learned from the lesson, which country are Estela and Ana describing? USA Argentina Dominican Republic Germany A steam turbine receives 8 kg/s of steam at 9 MPa, 650 C and 60 m/s (pressure, temperature and velocity). It discharges liquid-vapor mixture with a quality of 0.94 at a pressure of 325 kPa and a velocity of 15 m/s. In addition, there is heat transfer from the turbine to the surroundings for 560 kW. Find the power produced by the turbine and express it in kW? If nine of every 11 trick-or-treaters that came to your house last Halloween were dressed as pirates what proportion of trick-or-treaters were not dressed as pirates 3.A passenger jet can fly 1,290 milin 3 hours with a tailwind bi1,230 miles in 3 hoursheadwind. Find the speedthe Jet in Still air and theof the wind. Read this example:The line to get into the concert was a river, snaking throughan endless valleyWhich type of figurative language is being used in the example?A. SimileO B. HyperboleC. OxymoronD. Metaphor According to this label, what is the serving size for this product? Nutrition Facts: Serving Six 1 cup (228 g), Servings per container 2. Amount per Serving: Calories 260, Calories from Fat 120, % Daily Value: Total Fat 13g - 20%, Saturated Fat 5g - 25%,Trans Fat 2 g, Cholesterol 30 mg - 10%, Sodium 660 mg - 28%, Total Carbohydrate 31 g - 10%, Dietary fiber 0g - 0%,Sugars 5g, Protein 5g Mario and tabitha are calculating the probability of getting a 4 and a 2 if they roll a die twice. Who is correct? Where was the above piece permanently placed? How many grams of CO are produced when 41.0 g of C reacts?